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 This dissertation demonstrates the application of a vapor phase method to 

synthesize supported and unsupported nanoparticle catalysts for CO oxidation. The method 

is based on the Laser Vaporization/Controlled Condensation (LVCC) technique. The first 

part of this dissertation presents the vapor phase synthesis and characterization of gold 

nanoparticles supported on a variety of oxide supports such as CeO2, TiO2, CuO and MgO. 

The results indicate that Au nanoparticles supported on CeO2 exhibit higher catalytic 

activity than Au supported on other oxides. The high activity of the Au/CeO2 catalyst is 
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attributed to the strong interaction of Au with CeO2. The results also indicate that 5 % Au 

loading on CeO2 has higher activity than 2% Au or 10% Au. When comparing the catalytic 

activity of Au/CeO2 prepared by physical (LVCC) and chemical (deposition-precipitation) 

methods, it was found that the catalytic activity is higher for Au/CeO2 prepared by the 

deposition-precipitation method. 

The effect of alloying Au and Cu nanoparticles on the catalytic activity for low 

temperature CO oxidation was also investigated. The unsupported Au-Cu alloy 

nanoparticle catalyst exhibits higher catalytic activity than the activities of the individual 

components and their physical mixtures. The XRD data of Au-Cu alloy taken after the 

catalysis test indicates the formation of CuO within the bimetallic nanoparticles, which 

improves the catalytic activity of Au-Cu alloy nanoparticle.  

 The second part of this dissertation investigates the gas phase reactions of Au+ and 

Cu+ with CO, O2 and H2O molecules using the Laser Vaporization ionization, High-

Pressure Mass Spectrometry (LVI-HPMS) technique. The gas phase reactions resulting 

from the interactions of Au+ with CO and O2 molecules are investigated. Although 

multiple additions of CO and O2 molecules on Au+ have been observed at room 

temperature, no evidence was found of the production of CO2. This is attributed to the 

presence of water molecules which effectively replace the oxygen molecules on Au+ at 

room temperature  

Finally, the role of the metal cations Au+ and Cu+ in initiating the gas phase 

polymerization of butadiene and isoprene vapors was investigated. 

 



www.manaraa.com

 19

 

1 : Introduction 

 

Carbon monoxide and volatile organic compounds (VOC), such as butadiene and 

isoprene, are air pollutants emitted by many industrial sources, such as burning of wood 

and fuel with poor ventilation, and by natural sources including forest fires or volcanic 

eruptions 1-4. CO and VOC are also significantly abundant in cigarette smoke. 

The health effects associated with CO depends on its concentration and duration of 

exposure 5,6. CO Concentrations of 10 to 100 ppm in ambient air can have many health 

effects on the general population 7. The health effects associated with exposure to CO are 

due to its strong bond with the hemoglobin molecule, forming carboxyhemoglobin 

(COHb). COHb impairs the oxygen-carrying capacity of the blood by putting a strain on 

tissues with high oxygen demand, such as the heart and the brain. CO also binds to 

Cytochrome oxidase, which reduces the cells’ ability to utilize oxygen 8. 

 Catalytic oxidation is one effective method of removing CO. Nanophase metal and 

metal oxide catalysts, with controlled particle size, high surface area, and more densely 

populated unsaturated surface coordination sites, could potentially provide significantly 

improved catalytic performance over conventional catalysts 9-13. The large numbers of 

surface and edge atoms provide active sites for catalyzing surface reactions as shown in 

Figure 1. Highly non-stoichiometric oxide nanoparticles, such as CeO2-x, provide a high 

oxygen vacancy concentration and active superoxide surface species. These nanoparticle 

oxides enable catalytic activation at significantly lower temperatures for the reduction of 
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sulfur dioxide and the oxidation of carbon monoxide 11,12. Research in this area is 

motivated by the possibility of designing nanostructured catalysts that possess novel 

catalytic properties such as low temperature activity, selectivity, stability, and resistance to 

poisoning and degradation effects 9-13. Such catalysts are essential for technological 

advances in environmental protection, improving indoor air quality, and in chemical 

synthesis and processing. 

 Since the catalytic properties of platinum were discovered by Faraday in 1835, 

transition metal oxide catalysts have been used as CO oxidation catalysts. Although CO 

has a small dipole moment and is only a weak donor, CO strongly bonds with transition 

metals and their oxides due to the electron donation from the 5σ carbon monoxide orbital 

to the metal, and the subsequent transfer of two electrons from the d metal atomic orbitals 

to the antibonding 2π∗ CO orbital. This electron transfer is known as back-donation 14,15. 

The CO adsorption on metal oxide surfaces under ambient conditions favored the site that 

contains a cation with low oxidation state. However, CO bonding to metal oxide via σ-

donation to Lewis acid sites required very low temperatures 16. CO reacts with pre-

adsorbed or lattice oxygen to give CO2. The molecular oxygen (O2) is a powerful electron 

acceptor and can be molecularly or atomically adsorbed. Molecular adsorption occurs on 

n-type semi-conductive oxides, while atomic adsorption occurs on the defects such as 

oxygen vacancies on reduced transition and none-transition metal oxides17-19. However, 

these catalysts are less active and unstable in the presence of moisture and sulfur 

compounds than noble metal catalysts 20,21. Precious metals such as (Pt, Pd) are well 
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known oxidation catalysts with high activity and stability, even in the presence of moisture 

and sulfur compounds, and they are usually used in gas exhaust emissions control 22. 

Nanoparticles play important roles in many technological areas due to their unusual 

properties. These materials are characterized by small particle size and high surface area. 

 Depending on their size, shape, and preparation conditions, nanoparticles can 

exhibit unique properties (electrical, optical, magnetic, and catalytic) which are different 

from their bulk material properties 23-27. The high surface area of the nanoparticles is 

associated with their surface structure and morphology. The surface of the nanoparticles 

contains a large number of defects. These defects have high surface energy sites as shown 

in Figure 1 and described by a model proposed by Somorjai 28. The presence of structurally 

heterogeneous sites on the nanoparticles can greatly reduced the activation energy of CO 

oxidation reaction by the adsorption of CO molecules on these high energy sites. 

 Controlling the size and morphology in the synthesis of nanoparticles is crucial in 

achieving high surface area and small particle size. Many nanoparticle catalysts 

preparation methods are involved in the chemical and the physical techniques. However, 

the synthesis of nanoparticles of controlled size and composition have been achieved using 

laser vaporization controlled condensation (LVCC) method 26,29,30. This technique (LVCC) 

uses laser vaporization of bulk materials, under controlled condensation conditions, to 

prepare a wide variety of metallic and semiconductor nanoparticles 26,29,30 
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Figure 1: Model of heterogeneous solid surface of a nanoparticle having different surface 
sites defined by the number of the nearest neighbors 28.
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2 : Experimental Techniques and Methods 

This chapter describes the experimental techniques used in the synthesis and 

characterization of nanoparticle catalysts. 

2.1 Catalyst Preparation 

There are many techniques used to produce nanoparticles using both chemical and 

physical methods. In this work, laser vaporization controlled condensation (LVCC) was 

used as an example of a physical method and deposition precipitation (DP) was used as an 

example of a chemical method. 

2.1.1 Physical method (Laser Vaporization Controlled Condensation (LVCC) 

There are different physical methods used to produce nanoparticles from the vapor 

phase, such as sputtering, chemical vapor deposition, exploding wire, and laser 

vaporization controlled condensation31. These methods are based on the condensation of 

supersaturated metal vapors. 

The LVCC has an advantage over typical thermal vaporization methods due to the 

production of a high density vapor of any metal or metal oxide targets. The advantages of 

the vapor phase synthesis are the contamination-free products (as compared to chemical 

reductions in solutions), the elimination of chemical precursors and solvents, and, in most 

cases, the production of highly crystalline nanoparticles 9,32-39. The LVCC can be used to 

produce a wide variety of metals and supported metal nanoparticles with controlled size 

and composition 26,29,30. El-Shall et al. introduced the LVCC method and demonstrated its 

use in producing nanoparticles of Si, Ge, MoO3, and WO3 with unique surface oxidation, 
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photochromic, and photoluminescence properties 39,40. A schematic diagram and relevant 

components of the LVCC method are shown in Figure 2. In the LVCC method, a pulsed 

beam of the second harmonic (532 nm) Nd-YAG laser operated at 30 Hz (50-200 mJ/pulse 

laser power, 5 ns pulse duration) is focused on a target of interest. The target is placed in a 

chamber with well-defined temperature and pressure. The chamber consists of two 

horizontal, circular stainless-steel plates separated by a class ring. The chamber is usually 

filled with a pure carrier gas such as He or Ar or a mixture containing a known 

concentration of reactant gas such as O2. The target is placed on the bottom plate where the 

temperature is maintained higher than the top plate and controlled by circulating water. 

The top plate can be cooled to 150 K using liquid N2. The advantage of the temperature 

gradient between the two plates is to create a convection current; this current is further 

enhanced by using a heavy carrier gas under high pressure (103 torr). The pulsed metal 

vapor is generated by laser vaporization of the target. To achieve good reproducibility of 

the amount of vapor produced, the laser beam is moved on the target surface to expose new 

surface areas. After the laser pulse strikes the target and creates plasma, the ejected pulse 

of metal atoms interacts with the gas inside the chamber. Nucleation takes place 

immediately and results in the formation of nanoparticles.  

Diffusion and convection currents prevent the particles from growing to larger 

particle sizes by removing them from the nucleation zone with high density. Temperature 

gradient, total pressure, and laser power (determined by the number density of the metal 

atoms in the vapor phase) control the size of the condensing particles. For example, 5 % 

Au/CeO2 was prepared by physical mixture of (5%) Au and (95%) CeO2 powders. The 
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sample was then pressed with high pressure to form a homogenous target. The laser power 

was measured using OPHIR optronics LTD., NOVA laser power monitor. 

The catalyst samples as prepared by the LVCC method (fresh samples) were tested 

for activity by heating the samples in (3.60 wt. % of CO and 20.0 wt. % of O2 balanced 

with helium) mixture, which is referred to as (run 1), cooled to room temperature, reheated 

again, and tested for activity (run 2). 

2.1.2 Chemical method: (Deposition – Precipitation (DP)) 

 
In this method, 0.885 g of Hydrogen tetrachloroaurate (III) hydrate (HAuCl4) was 

dissolved in water and slowly and homogenously precipitated by hydroxide ion from 

(NaOH) solution with pH between 6 and 10. CeO2 powder (4.75 g) was suspended in water 

with pH between 6 and 10 by adding the NaOH solution drop wise and stirring for one 

hour, then the HAuCl4 solution was added to the CeO2 solution drop wise; controlling the 

pH between 6 and 10 by adding NaOH. As a result, Au (OH)3 precursor is deposited 

exclusively on CeO2. Then the solution was washed, dried, and heated at 98 0 C for one 

hour to produce Au metal on CeO2 nanoparticles. This method is described in detail by 

Iizuka et al 41. 

2.2 Catalyst Activity Measurements 

The catalytic activity of each catalyst was carried out by using a flow tube reactor 

(length 50 cm, i.d. 0.9 cm) coupled to an infrared detector. A schematic diagram of the 

experimental setup is shown in Figure 3.  
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The catalyst sample is placed in a fixed bed between two pieces of quartz wool in 

the middle of a quartz tube. The flow tube is then placed inside a temperature programmer 

Thermolyne 21100 tube furnace. The sample temperature is monitored using an Omega K-

type thermocouple inserted in the middle of the sample. Another thermocouple is built into 

the furnace to measure the furnace temperature. The temperatures and the concentration 

data are recorded by a Labview-based program. The sample temperature is always higher 

than the furnace temperature since the catalytic oxidation reaction of CO is exothermic. 

Therefore, all the data in this work are plotted as a function of sample temperatures. 

 The gas mixture flow rate is controlled by MKS digital flow meters. The effluent 

gases are analyzed using an Automated Custom System infrared gas analyzer. In these 

experiments, a gas mixture containing 3.60 wt. % of CO and 20.0 wt. % of O2 balanced 

with helium was used. The mixture was flowed over the catalyst (100 CC/min) while the 

catalyst is heated to different temperatures. The effluent gases were introduced to the 

infrared gas analyzer. CO and CO2 concentrations are measured based on the absorption of 

IR radiation. Transmittance is related to gas concentrations through Beer's law: 

                               ( ) ( )0/ exp gI I Lτ ν α ν⎡ ⎤= = −⎣ ⎦                                                      (2.1) 

 
I = intensity of radiation transmitted through the sample at a given wave number, ν, IO = 

intensity of transmitted radiation with no sample, αg (ν) = absorption coefficient of the gas, 

and L = path length of the IR beam through the sample. The absorption αg(ν) is zero 

outside the gas absorption bands and is proportional to the gas concentration inside the 

absorption bands. CO has an absorption band at the characteristic wave number of 2200 
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cm-1, and CO2 has an absorption band at the characteristic wavenumber of 2350 cm-1. By 

monitoring the change of the CO and CO2 concentrations and plotting the normalized ratio 

(([CO] / [CO] + [CO2]) * 100 %)) as a function of catalyst temperature, the catalyst 

activity can be measured. 

The surface area of the catalyst was measured using five points N2 physisorption 

using Brunauer, Emmett, Teller technique (BET) (Quantachrome Autosorb Automated Gas 

Sorption Unit). The crystallographic structure of the catalyst was analyzed using X-ray 

diffraction (XRD) (Philips X’Pert Pro Theta-Theta system operated at 45 kV and tube 

current of 40 mA). Scanning Electron Microscopy (SEM) was done using a Quantum DS-

130S electron microscope. The Energy Dispersed X-ray (EDS) and the transmission 

electron microscope (TEM) images were obtained using a JOEL JEM-FXII TEM operated 

at 200kV. High-resolution TEM (HRTEM) images were obtained using a JOEL 4000EX 

operated at 400 kV. Typically, a drop of methanol-dispersed nanoparticles was placed on a 

carbon-coated copper grid, and left to dry. X-ray Photon Electron Spectroscopy (XPS) 

spectra were obtained using Physical Electronics Model 5700LSci ESCA spectrometer. 

Temperature Programmed Reduction (TPR) profiles where obtained using EPA Cincinnati 

AutoChem II 2920 V2. 
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Figure 2: Experimental setup of Laser Vaporization Controlled Condensation (LVCC) 
method. 
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Figure 3: Experimental setup for catalysis experiment with relative components.
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Part. I 
 

3 : Low temperature CO oxidation on Au nanoparticle catalyst 

3.1  Introduction 

 Gold is regarded as being catalytically inert 42,43. However, Au catalyst, when 

dispersed on metal oxide support, are found to be 1000 times more active than Pt based 

catalysts in electrochemical and catalytic CO oxidation under a basic environment 44-48. 

Metal oxide or activated carbon supported Au also promote many other reactions 42,49,50. 

 The low catalytic activity of Au is due to the filled 5d shells (i.e. [Xe] 4f14 5d10 6s1) as 

well as its high value of first ionization potential (i.e. 888 kJ/mole). For bulk gold, the 

formation enthalpy for Au2O3 is positive (∆Hf = + 19.3 kJ/mol)43, and therefore this oxide 

is instable. Based on the assumption that the initial chemisorption’s enthalpies are linearly 

related to the formation enthalpies of stable metal oxides (the Tanaka-Tamaru rule), 

oxygen chemisorption on gold is impossible 51.  

 A number of studies have shown how nanoparticles of gold lose their metallic nature 

as their size decreases, the transition occurring at a size dependent on the chemical 

environment but, as mentioned previously, certainly somewhere between 1 and 3 nm, 

corresponding to a hemispherical cluster with somewhere between about 14 and 140 atoms 

44-48. The special electronic configuration of very small nanoparticles results from their 

physical dimensions being smaller than the characteristic dimension of the electron wave 

function of the bulk material. An Au cluster diameter of 3 nm size range is associated with 

the presence of a band gap, in contrast to bulk gold which has no band gap. The oxygen 
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affinity of Au to form stable metallic nanoclusters is increased, while other metals will 

normally be oxidized in this size range 52. 

 The catalytic activity of gold has been investigated by many researchers throughout the 

20th century 53. The hydrogen oxidation on Au was first observed in 1906 by W. A. Bone 

and R. V. Wheeler. In 1925, Bone and G. W Andrew were the first to report Au catalyzed 

CO oxidation. During the 50s and 60s, Au was mainly used as a hydrogenation catalyst. In 

the 70s, G. C. Bond, P. A. Sermon, and G. Paravano prepared small-dispersed Au particles 

on different metal oxide supports (MgO, Al2O3, and SiO2). They found that some of the 

samples exhibited catalytic activity toward hydrogenation of alkenes at very low 

temperatures (e.g. 373 K) 54. In the mid 70s, Ozin and McIntosh reported the first evidence 

of CO oxidation on Au neutral atoms; they proposed a gold complex containing a 

maximum of two Carbon monoxide ligands reacts with O2 at very low temperatures (30-40 

K) to form CO2. These results were later used to develop a model for the mechanism of 

heterogeneously catalyzed CO oxidation 55,56. In 1985 G. J. Hutching reported that Au is 

the most active catalyst for hydrochlorination of acetylene to vinyl chloride 57.  

 The initial evidence that supported Au, prepared by co-precipitation or deposition 

precipitation, being used for ambient temperatures CO oxidation was reported by Haruta in 

1987 46. These results were the basis of Au catalysis research in the scientific world today.  

 The discovery of a highly active Au catalyst was based on a volcano-curve between the 

catalytic activity of metal oxides and the heat of metal oxide formation per one oxygen 

atom which corresponds to metal–oxygen (M-O) bonding strength 58,59. They predicted 

that a combination of metals on the opposite side of the volcano Curve, Au and Ag have 
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weaker M-O bonds than PtO2 with Mn, Fe, Co, Ni which have stronger bonding, can 

produce a complex oxide that is as active as PtO2, which has the highest bonding strength. 

In fact, Au supported on transition metal oxides is found to be more active than PtO2 for 

CO oxidation. Volcano plots of transition metals and there intermetallic synergetic effect 

has been studied thoroughly by Jaksic 60-62. 

 When gold is dispersed on a support with a high surface area, however, its catalytic 

activity has been found to increase significantly 63. Since gold nanoparticles are thought to 

have negative surface charge, strong electrostatic interactions may be expected with metal 

oxides positively charged on the surface. For highly dispersed gold, oxidation states 

different from the metallic state might be stabilized under certain conditions, partially 

covalent bonds between gold and oxide lattices might be of importance for the observed 

increase in the catalytic activity of finely dispersed gold 49,64.  

  CO oxidation on Au nanoparticle catalyst is structure sensitive. Therefore, the catalyst 

preparation is very important for catalysis by Au nanoparticles. There are three major 

factors defining the selectivity and the rate of the reaction on the Au catalyst: the size of 

the Au particle, the selection of the support, and (most importantly), the contact structure 

of Au with the support (the length of perimeter interface) 65. 

 It was reported that active Au particles in the nanoscale size between [2 and 15 nm] 

stabilized by metal oxide. The crucial diameter of 2 nm, which corresponds to 3 or 4 atoms 

thick hemispherical shape Au particle setting on the support 49. However, the particle size 

is very sensitive to pre-treatment conditions. The low temperature heat treatment of the 

catalyst is needed to convert the precursor to catalytically active species 66. High 
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temperatures can cause Au particles to grow to larger sizes since the melting point of Au 

nanoparticle is less than the bulk 67-69. Most active samples can be obtained without 

temperature heat treatment (calcinations) or calcinations at low temperatures.  

 The active site for CO oxidation on a Au nanoparticle catalyst is still unknown. Some 

studies suggest that the active site is the metallic Au0 surfaces or Au+ or both 70. X-ray 

absorption fine structure (XAFS) studies of impregnated Au/γ-Al2O3 and Au/MgO 

catalysts showed two phases of Au. A part structurally similar to Au0; the rest is present in 

the form of two-dimensional or atomically dispersed Au structure carrying a formal charge 

of + 1 71,72. 

 CO oxidation appears to occur with high reaction rates if CO, adsorbed on a gold 

particle, interacts with oxygen adsorbed on a highly reducible metal oxide support, with 

subsequent dissociation at the metal–support interface. Earlier studies suggested that Au 

supported on reducible oxides, such as iron oxide, cerium oxide and titanium oxide, has 

higher activity than Au supported on non-reducible oxides 42,73-75. However, it has been 

reported recently that Au supported on non-reducible oxides such as magnesium oxide 

MgO has extremely high catalytic activity 76. A strong (metal-support) interaction plays a 

very important role in enhancing the catalytic activity 77. Many studies show that the 

metal–support interaction affects the electronic properties of supported noble metal 

catalysts, and changes the catalytic activity 78,79. When the alkalinity of the support 

increases, there is a decrease in the metal ionization potential, (shift to lower binding 

energy) due to the electrostatic Coulomb interaction between the support material and the 

metal particle. A decrease in the ionization potential of the metal valence orbitals changes 



www.manaraa.com

 34

the energy of the metal valence orbitals which alters the chemisorption energy. These 

changes in the chemisorption energy between the metal and adsorbate will affect the 

catalytic activity 78,79. 

 Among the metal oxides used as support for gold, ceria has not been widely 

investigated; on the other hand, ceria-containing materials have been widely studied for a 

number of heterogeneous catalytic reactions such as the treatment of exhaust gases from 

automobiles 80. Ceria (CeO2) is used as a promoter in the three-way catalyst (TWC) in the 

automotive emission control system and it can be used as a support for many oxidation 

catalysts 80,81. The promoting role of cerium oxide is proposed to involve multiple 

processes, such as the enhancement of the noble metal dispersion and the stabilization of 

the support toward thermal sintering, as well as its direct participation in chemical 

processes like the water–gas shift reaction or the decomposition of nitrogen oxides, and in 

general, processes involving incorporation/removal of structural oxygen, which are 

denoted as the oxygen storage capacity (OSC) of the system. CeO2 is a better support for 

noble metals than other catalysts such as Al2O3 because it prevents the sintering and 

improves the low temperature activity for CO oxidation82. CeO2 has a high oxygen storage 

capacity, taking up oxygen under oxidizing conditions and releasing it under reducing 

conditions 22,83. The ability of oxygen storage capacity results from the fact that CeO2 can 

deviate from a stoichiometric formula to give a continuum of oxygen deficient non 

stoichiometric oxides CeO2-x under the changing oxidizing or reducing conditions. The 

change of the oxidation state of cerium from +4 to +3 improves the oxidation of CO by 

providing oxygen or taking oxygen 84. Noble metal catalysts such as Pt, Pd, and Rh, 
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supported on cerium oxide supports have been studied 85. The results show that these 

catalysts exhibit high catalytic activities for CO oxidation and water gas shift reaction 

since they have higher oxygen storage capacity and reducibility as compared to pure ceria 

86 . 

 The Au/CeO2 catalyst is a very active catalyst for CO oxidation and for redox 

reactions as reported by Flytzani-Stephanopoulos and coworkers 87 and by 

Luengnaruemitchai et al. 88. Gardner et al. 89 reported high catalytic activity in CO 

oxidation at 75 oC for co-precipitated 20% Au/CeOx; with negligible activity decay over 

160 h. Lyn and Flytzani-Stephanopoulos 90 demonstrated the complete CO oxidation in air 

at room temperature on a 5 % Au/Ce(La)Ox catalyst calcined in air at 500–600 ◦C. Dekkers 

et al. 91 showed an increased catalytic activity in CO oxidation on silica- and alumina-

supported Au samples when a 10% CeOx was subsequently impregnated on the parent 

catalysts. More recently, Bera and Hegde 92 reported complete CO oxidation below 200 ◦C 

over thermally treated Au/CeOx prepared by the solution-combustion method. Moreover, 

the activity and selectivity of Au/CeOx for low temperature (40–80 ◦C) CO oxidation in 

hydrogen-rich reformer gas were found by Han et al. 93 to be higher than those of 

conventional Pt/Al2O3 catalysts. Au/CeO2 shows enhanced catalytic activity towards the 

oxidation of selected volatile organic compounds (VOC), which is related to the capacity 

of gold nanoparticles to weaken the Ce-O bond, therefore increasing the mobility and the 

reactivity of the surface lattice oxygen which leads to oxidation of VOC’s through the 

Mars-Van Krevelen reaction 94. 
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3.2 Experimental results 

3.2.1 Low temperature CO oxidation on Au nanoparticle catalyst  

 Gold has a face-centered cubic (FCC) crystal structure with a lattice constant of 0.408 

nm 95,96. Figure 4 compares the X-ray diffraction pattern of Au bulk material with the Au 

nanoparticles prepared by LVCC. The typical characteristic planes (111), (200), (220), 

(311) of FCC crystal lattice are retained in Au nanoparticles, which is similar to Au bulk 

structure. However, the diffraction peaks of Au nanoparticles are broader compared to the 

bulk Au. This broadening is due to their small particle size.  

 A Transmission Electron Microscopy (TEM) micrograph of Au nanoparticles as 

prepared by LVCC method is shown in Figure 5. The micrograph shows two different 

structures, spheres and web-like structure. 

 Figure 6 compares the x-ray diffraction patterns of Au nanoparticles before and after 

heat treatment in CO/O2 mixture. The diffraction patterns indicate that Au nanoparticles 

don’t oxidize. 
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Figure 4: Comparison between X-ray diffraction pattern of Au bulk material and Au 
nanoparticles prepared by LVCC. 
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Figure 5: TEM of Au nanoparticles as prepared by LVCC method. 
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Figure 6: Comparison between X-ray diffraction patterns of Au nanoparticles before and 

after catalysis (after heat treatment in CO/O2 mixture). 
 



www.manaraa.com

40 

3.2.2 CO oxidation on supported Au nanoparticle catalyst 

 A wide range of supported gold catalysts on different metal oxide supports have 

been studied for CO oxidation 75,76,97,98. By varying the support for the gold, a high range 

of control over the reactions is available. Another interesting property of the support is the 

ability to disperse Au particles. To examine the effect of support, the catalytic activities of 

Au supported on different metal oxide nanoparticle catalysts will be measured using the 

flow reactor Infrared spectrometry system shown in Figure 3. Metal loading is also 

important in the catalytic performance of the catalyst. The effect of Au loading will be 

examined by varying the percentage of Au supported on the metal oxide that exhibits the 

highest catalytic activity.  

 Depending on the interaction between the Au nanoparticles and the support 

material, Au nanoparticle catalyst can exhibit a variety of conversion percentages. To 

examine the effect of the Au-support interaction, the catalytic activity of Au supported on 

the metal oxide that exhibits the highest catalytic activity will be compared to the catalytic 

activities of unsupported Au and support nanoparticles. 

 After optimizing the support and metal loading, we will evaluate the catalytic 

performance of the best catalyst in the presence of volatile organic compounds such as 

butadiene and isoprene will be evaluated. 

 The initial work in this dissertation was carried out using flow tube mass 

spectrometry reactor as shown in Appendix A.  
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3.2.3 Effect of Support 

 The effects of the oxide support on the catalytic activity of Au nanoparticles 

prepared by the LVCC method have been investigated. The X-ray diffraction patterns of 5 

wt. % Au supported on different metal oxides as prepared by LVCC method at 200 Torr of 

Ar are shown in Figure 7. It is clear that Au peaks can be distinguished beside the support 

peaks. The peak intensities for Au supported on ZrO2, Al2O3, and SiO2 are higher than Au 

supported on CeO2 , where Au peaks are almost not observable. These results indicate that 

Au nanoparticles are well dispersed in CeO2 and less dispersed in other supports. Also this 

is indicates that depending on the support, Au particles can have different sizes as reported 

in the literature 75,76. 

 Figure 8 describes the catalytic activities of nanoparticle catalysts containing 5% 

Au on different metal oxide supports (run 1) as prepared by LVCC method in 200 Torr Ar 

using the flow reactor IR spectrometry system. Table 1 summarizes the catalytic activities 

of nanoparticle catalysts containing 5% Au on different metal oxide supports (run 1) as 

prepared by the LVCC method. The Au/CeO2 catalyst has the highest activity, followed by 

Au/Al2O3, Au/ZrO2, and finally Au/SiO2. The light-off temperature of 5% Au/CeO2 

nanoparticles is 214 0C, reaches 50% conversion at 243 0C, and a 99% conversion at 358 

0C. In the second run, the conversion curves are different. As shown in Figure 9 the 

Au/CeO2 catalyst has the highest activity followed by Au/ZrO2, Au/Al2O3 and finally 

Au/SiO2. The light-off temperatures in the cases of Au/CeO2, and Au /ZrO2 systems are 

shifted downward to the lower temperature region while in case of Au / Al2O3, and Au / 

SiO2 they are shifted to a higher temperature region. The maximum conversion percentage 
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increases by 1 % for the Au/CeO2 system while it increases by 10 % for the Au / ZrO2 

system and decreases sharply in case of Au / Al2O3 and Au / SiO2. For comparison, in the 

second run, the light-off temperature of 5% Au/CeO2 nanoparticles shifted downward to a 

lower temperature region by about 181 0C to 33.5 0C and reached 50% conversion at 76 

0C, and 100% conversion at 323 0C. Table 2 summarizes the catalytic activities of 

nanoparticle catalysts containing 5% Au on different metal oxide supports (run 2). 

 The high activity of the Au/CeO2 nanoparticle catalyst is attributed to the strong 

interaction between Au and CeO2 and to the oxygen storage capacity and redox properties 

of CeO2 nanoparticles. The interaction between Au and the supports depends on the 

electronic structure of the support. In the case of a semiconductive metal oxide support, 

such as CeO2 and ZrO2, Au is more stable than in the case of an insulating support, such as 

Al2O3 and SiO2. 
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Figure 7: X-ray diffraction patterns of Au nanoparticles supported on different metal oxide 
supports as prepared by the LVCC method at 200 Torr of Ar. 
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Figure 8: Catalytic activities of nanoparticle catalysts containing 5% Au on different metal 

oxide supports as prepared by the LVCC method in 200 Torr Ar (run 1). 
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Table 1 summarizes the catalytic activities of nanoparticle catalysts containing 5% Au on 
different metal oxide supports as prepared by the LVCC method in 200 Torr Ar 
(run 1). 

 

 

Maximum Conversion 
(%) 

 

 
Sample 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Au/CeO2 213.7 242.5 357.7 98.9 

Au/ZrO2 222.5 434.8 508.8 54.9 

Au/Al2O3 256.5 404.0 546.5 57.4 

Au/SiO2 291.3 - 431.4 34.1 
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Figure 9: Catalytic activities of nanoparticle catalysts containing 5% Au on different metal 

oxide supports (run 2) prepared by the LVCC method in 200 Torr Ar using the 
flow reactor IR spectrometry system. 
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Table 2 summarizes the catalytic activities of nanoparticle catalysts containing 5% Au on 
different metal oxide supports by the LVCC method in 200 Torr Ar after heat 
treatment (run 2). 

 

Maximum Conversion 
(%) 

 

 
Sample 

 
3% 

Conversion 
Light-off 

Temp.(o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Au/CeO2 33.5 76.4 323.2 99.7 

Au/ZrO2 249.0 416.4 561.2 66.5 

Au/Al2O3 256.8 - 565.9 40.3 

Au/SiO2 298.4 - 494.9 25.6 
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3.2.4 Effect of Au loading 

 Since Au supported on CeO2 exhibits higher catalytic activity than Au supported on 

other metal oxide supports, it is important to investigate the Au loading that gives the 

highest activity. Figure 10 shows X-ray diffraction patterns of different Au loading in 

CeO2 as prepared by the LVCC method at 200 Torr of Ar. X-ray diffraction patterns show 

both crystalline CeO2 peaks and crystalline Au peaks. However, the intensities of Au peaks 

increases as the Au loading increases, as expected. Also, the peak broadening in both CeO2 

is attributed to their small size. For Au peaks, the broadening decreases as the Au loading 

increases which is attributed to the nucleation of small Au particles to larger particles. 

TEM micrographs, shown in Figure 11, support the diffraction data which show that Au 

particle size increases as the Au loading increases and that it transforms from island growth 

for 2 % Au to three dimensional growths for 5, 10 % Au loading. However for 10 % Au 

loading there is excess Au beside the Au setting on spherical CeO2 that nucleates to form 

large Au particles which is separated from the spherical particles. For the spherical 

particles, Au alters new types of morphology where new faces of spherical particles start 

emerging, which is considered as a precursor for new phase of growth of Au on CeO2. 

 The catalytic activities of the Au/CeO2 system with different Au loading 

percentages (2, 5, and 10 %) as prepared by the LVCC method in 200 Ar (run 1) are tested 

using the flow reactor IR spectroscopy, and are shown in Figure 12. The light-off 

temperature of 5 % Au/CeO2 is higher than 2 % Au/CeO2 followed by 10 % Au/CeO2 and 
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the conversion percentage of 2 % Au/CeO2 is higher than 5 % Au/CeO2 followed by 10 % 

Au/CeO2. The overall activity curve of 5 % Au loading shows a higher conversion than 2% 

Au and 10 % Au. Table 3 summarizes the catalytic activities of Au/CeO2 nanoparticle 

catalyst with (2%, 5%, and 10%) Au loading as prepared by LVCC method in 200 Torr Ar 

(run 1). These results can be explained based on the X-ray patterns and TEM micrographs 

where the 2 % Au particles are small islands and the number of these particles are 

insufficient to fill the entire sites on a CeO2 surface and are perhaps less active sites for CO 

oxidation reaction to occur, which is reflected in the conversion curve. For 10 % Au 

loading, there is excess gold that caused Au particles to grow to larger particle size and 

separate from the CeO2 which reduced their activity. 5 % Au is the optimal loading to fill 

all vacant sites on a CeO2 surface and form 3-D particles of Au with strong contact with 

CeO2. In the second run, as shown in Figure 13, the 5 % Au/CeO2 system shows higher 

activity than the 2 % Au/CeO2 system, followed by the 10 % Au/CeO2 system. The 

catalytic activities of different Au loading on CeO2 prepared by LVCC at 200 Torr Ar (run 

2) are summarized in Table 4. The conversion curves of all catalysts are shifted to a lower 

temperature region. For comparison, the light-off temperature for the 5 % Au/CeO2 is 33.5 

o C, 53.2 o C for 2 % / CeO2, and finally is 117 o C for 10 % / CeO2. The maximum 

conversion is 99.7 % at 323.2 o C for 5 % Au/CeO2, 99.9 % at 258.2 o C for 2 % / CeO2, 

and finally 94.1% at 361 o C for the 10 % / CeO2 system. The temperature shift is due to 

the reduction of the active component which enhanced the metal-support interaction, and 

the removal of the contaminants and moisture which improve the active site.  
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Figure 10: Comparison of X-ray patterns of different Au loading supported on CeO2 as 
prepared by the LVCC method at 200 Torr Ar. 
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Figure 11: TEM micrographs of different Au loading supported on CeO2 as prepared by 

the LVCC method at 200 Torr Ar a) 2 % Au b) 5 % Au c) 10 % Au. 
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Figure 12: Catalytic activities of Au/CeO2 nanoparticle catalyst with (2%, 5%, and 10 % 

Au) as prepared by the LVCC method at 200 Torr Ar (run 1).  
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Table 3 summarizes the catalytic activities of the Au/CeO2 nanoparticle catalyst with (2%, 
5%, and 10%) Au loading as prepared by the LVCC method in 200 Torr Ar. 

 

Maximum Conversion 
(%) 

 

 
Sample 

 
3% Conversion 

Light-off 
Temp. (o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

2% Au 145.9 204.2 249.8 100 

5% Au 213.7 242.5 357.7 98.8 

10% Au 220.0 283.0 358.4 95.0 
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Figure 13: Catalytic activities of the Au/CeO2 nanoparticle catalyst with (2%. 5%, and 10 

% Au) prepared by the LVCC method at 200 Torr Ar (run 2). 
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Table 4 summarizes the catalytic activities of the Au/CeO2 nanoparticle catalyst with (2%, 
5%, and 10%) Au loading prepared by the LVCC method in 200 Torr Ar after 
heat treatment in CO/O2 mixture (run 2). 

 

Maximum Conversion 
(%) 

 

 
Sample 

 
3% Conversion 

Light-off 
Temp. (o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

2% Au 53.2 107.5 258.2 99.9 

5% Au 33.5 76.4 323.2 99.7 

10% Au 117.6 260.1 361.0 94.1 
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3.2.5 Effect of Au-support Interaction  

 Although the individual Au and CeO2 nanoparticles showed high catalytic 

activities, the physical mixture of Au nanoparticles with CeO2 nanoparticles did not exhibit 

any enhanced activity, as shown in Figure 14 (run 1) and Figure 15 (run2). Table 5 and 

Table 6 compare the catalytic activity of the supported Au/CeO2 nanoparticles prepared by 

the LVCC method (run 1, and 2) with the activities of individual Au nanoparticles, CeO2 

nanoparticles, and the 5% Au nanoparticles in a 95 % CeO2 nanoparticles mixture. After 

the heat treatment (run 2), the conversion curve is shifted to lower temperature region for 

Au/CeO2 nanoparticles prepared by the LVCC method, while there is no significant shift 

for the bulk mixture. The very different activity of the physical mixture of a 5% Au and 

95% CeO2 nanoparticles from that of the 5% Au/CeO2 nanoparticles prepared by the 

LVCC clearly indicates that laser vaporization of the mixed Au-CeO2 target under the 

appropriate LVCC conditions can produce Au nanoparticles supported on CeO2 

nanoparticles with significant metal-support interaction. This effect will be investigated 

later using the Temperature Programmed Reduction (TPR) experiment. 
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Figure 14: Catalytic activities of the supported Au/CeO2 nanoparticles prepared by the 
LVCC method (run 1) and the individual Au nanoparticles, CeO2 
nanoparticles, and the 5% Au nanoparticles in a 95 % CeO2 nanoparticles 
mixture. 
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Table 5 compares the catalytic activities of the supported Au/CeO2 nanoparticles prepared 
by the LVCC method (run 1) and the individual Au nanoparticles, CeO2 
nanoparticles, and the 5% Au nanoparticles in a 95 % CeO2 nanoparticles 
mixture. 

 

 

Maximum Conversion 
(%) 

 

 
Sample 

 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Au (Nano) 298.8 - 546.7 25.7 

CeO2 
(Nano) 

265.0 509.6 577.2 63.3 

Physical 
Mixture 

323.8 - 555.3 47.7 

Au/CeO2 
(LVCC) 

213.7 242.5 357.7 98.9 
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Figure 15: Catalytic activities of the supported Au/CeO2 nanoparticles prepared by the 
LVCC method (run 2) and the individual Au nanoparticles, CeO2 
nanoparticles, and the 5% Au nanoparticles in a 95 % CeO2 nanoparticles 
mixture. 
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Table 6 compares the catalytic activities of the supported Au/CeO2 nanoparticles prepared 
by the LVCC method (run 2) and the individual Au nanoparticles, CeO2 
nanoparticles, and the 5% Au nanoparticles in a 95 % CeO2 nanoparticles 
mixture. 

 

Maximum Conversion 
(%) 

 

 
Sample 

 
3% Conversion

Light-off 
Temp. (o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Au (Nano) 289.4 - 549.4 30.0 

CeO2 (Nano) 240.1 402.1 474.8 84.1 

Physical 
Mixture 

355.9 573.3 600 56.5 

Au/CeO2 
(LVCC) 

33.5 76.4 330.2 99.8 
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3.2.6 Effect of pressure and support at 1500 Torr 

Since 5 % Au supported on CeO2 nanoparticle catalyst shows higher activity than 5 

% Au supported on other metal oxide supports, we investigate the effect of pressure on the 

catalytic activity of this system was investigated using flow reactor IR spectroscopy as 

shown in Figure 16 and Figure 17. It is clearly indicated that the overall catalytic activity, 

of 5 % Au supported on CeO2 nanoparticle catalyst prepared at 1500 is higher in both run 1 

and run 2 than the corresponding Au/CeO2. The light-off temperature in run 1 is 50 o C for 

the 1500 Torr sample and 27 o C in run 2, while light-off temperature in run 1 is 214 o C for 

the 200 Torr sample and 33.5 o C in run 2. These results can be attributed to the possibility 

of a small leak when the sample is prepared at 200 Torr, which effects the catalyst 

performance by blocking some of the active sites, while the sample prepared in 1500 Torr 

eliminated this effect. When comparing the full conversion temperature, the sample 

prepared at 1500 Torr reached the full conversion at 233 o C in run 1 and 211 o C in run 2, 

while for the sample prepared at the 200 Torr reached the full conversion at 360 o C in run 

1 and 323 o C in run 2. Table 7 and Table 8 summarize the catalytic activities of 5 % 

Au/CeO2 prepared by LVCC at 200 and 1500 Ar (run 1 and run 2). 

 Since 5 % Au supported on CeO2 nanoparticle catalyst prepared at 1500 Torr 

shows enhanced activity over the catalyst prepared at 200 Torr, the effect of using a 

different supports at 1500 Torr than the supports we used previously was explored. Figure 

18 shows X-ray diffraction patterns of 5 wt. % Au supported on different metal oxides as 

prepared by the LVCC method in 1500 Torr Ar. It is obvious that Au peaks are 
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distinguishable in all patterns except for the Au/CeO2 and Au/MgO systems which is an 

indication of a high order of disparity and small particle size. The Au peaks in the Au/TiO2 

system have a high intensity which is indication of large particle size and less dispersion. 

Figure 19 shows the catalytic activities of 5 % Au supported on CeO2, CuO, MgO, and 

TiO2 as prepared by LVCC in 1500 Torr Ar atmosphere and using flow reactor IR 

spectroscopy. 5 % Au supported on CeO2 shows the highest activity followed by 5 % Au 

supported on CuO, TiO2, and finally MgO. The catalytic activities of 5 % Au supported on 

CeO2, CuO, MgO, and TiO2 as prepared by the LVCC method (run 1) are summarized in 

Table 9. These results can be explained based on the nature of the support material where 

CeO2, TiO2, and CuO are active supports, and while MgO is inert. In the second run, the 

catalytic activities are enhanced as a result of removing the moisture and improving the 

active site, and the reduction of the active component, except for the Au / MgO system, the 

catalytic activity is decreased due to the sintering effect, as shown in Figure 20. The 

catalytic activities of 5 % Au supported on CeO2, CuO, MgO, and TiO2 are summarized in 

Table 10. 
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Figure 16: Catalytic activities of 5 % Au/CeO2 as prepared by LVCC in 200 and 1500 Ar 
(run 1). 
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Table 7 summarizes the catalytic activities of 5 % Au/CeO2 as prepared by LVCC in 200 
and 1500 Ar (run 1). 

 
 

Maximum Conversion 
(%) 

 

 
Sample 

5%Au/CeO2 

 
3% 

Conversion 
Light-off 

Temp.(o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

200 Torr 213.7 242.5 357.7 98.8 

1500 Torr 50.2 118.2 233.2 99.5 
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Figure 17: Catalytic activities of 5 % Au/CeO2 prepared by LVCC in 200 and 1500 Ar 
after heat treatment in CO/O2 mixture (run 2). 
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Table 8 summarizes the catalytic activities of 5 % Au/CeO2 prepared by LVCC in 200 and 
1500 Ar after heat treatment in CO/O2 mixture (run 2). 

 

Maximum Conversion 
(%) 

 

 
Sample 

5%Au/CeO2 

 
3% 

Conversion 
Light-off 

Temp.(o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

200 Torr 33.5 76.4 323.2 99.7 

1500 Torr 27.5 89.95 210.9 99.4 
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Figure 18: X-ray diffraction patterns of Au nanoparticles supported on different metal 

oxide supports as prepared by the LVCC method at 1500 Torr of Ar. 
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Figure 19: Comparison of the catalytic activities of 5 % Au supported on CeO2, CuO, 

MgO, and TiO2 as prepared (run 1) by LVCC at 1500 Torr in Ar atmosphere and 
using flow reactor IR spectroscopy. 
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Table 9 summarizes catalytic activities of 5 % Au supported on CeO2, CuO, MgO, and 
TiO2 as prepared (run 1) by the LVCC method in 1500 Torr Ar. 

 

Maximum Conversion 
(%) 

 

 
Sample 

 
3% 

Conversion 
Light-off 

Temp.(o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Au/CeO2 50.2 118.2 233.2 99.5 

Au/CuO 149.0 209.4 263.7 96.5 

Au/MgO 339.2 - 563.0 28.1 

Au/TiO2 280.8 324.5 349.2 100 



www.manaraa.com

 70

 

100 200 300 400 500 600
0

20

40

60

80

100

P = 1500 Torr Ar
Ttop plate = (80-90) 0 C
Tbottom plate = 25 0 C
Laser power = (65-75) mJ / pulse

 Au / CeO2
 Au / CuO
 Au / MgO
 Au / TiO2

CO
 c

on
ve

rs
io

n 
( %

 )

Catalyst Temperature ( 0 C)  
Figure 20: Comparison of the catalytic activities of 5 % Au supported on CeO2, CuO, 

MgO, and TiO2 as prepared (run 2) by the LVCC at 1500 Torr in Ar atmosphere 
and using flow reactor IR spectroscopy. 
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Table 10 summarizes the catalytic activities of 5 % Au supported on CeO2, CuO, MgO, 
and TiO2 as prepared (run 2) by the LVCC method in 1500 Torr Ar. 

 

Maximum Conversion 
(%) 

 

 
Sample 

 
3% 

Conversion 
Light-off 

Temp.(o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Au/CeO2 27.5 90.0 210.9 99.4 

Au/CuO 88.0 155.5 249.5 94.7 

Au/MgO 264.91 - 560.0 25.4 

Au/TiO2 228.54 315.8 339.4 100 



www.manaraa.com

72 

3.2.7 CO oxidation on Au/CeO2 prepared by the LVCC method 

 The Au/CeO2 system shows great promise for efficient low temperature CO 

oxidation. To optimize this system, it is crucial to examine many factors that affect the 

catalytic performance of this catalyst, such as the effect of preparation conditions 

(pressure; and heat treatment), aging, and stability.  

 As indicated by Figure 16 and Figure 17, Au/CeO2 nanoparticles prepared by 

LVCC at 1500 Torr show higher catalytic activity than the same particles prepared at 200 

Torr of Ar. There are other factors that affect the catalytic performance of this catalyst, 

such as particle size, pretreatment conditions, and the interaction between Au and CeO2. 

Furthermore it is important to investigate the reproducibility and the stability of this 

catalyst.  

 BET Surface area measurement shows that the Au/CeO2 catalyst has a surface area 

of 84.5 m2 / g. This is a large surface area compared to the surface area of corresponding 

micron sized powder. 

 Figure 21 shows X-ray diffraction pattern of 5 % Au/CeO2 as prepared by the 

LVCC method at 200 Torr. Both crystalline CeO2 peaks and crystalline Au peaks can be 

distinguished. However, the intensities of Au peaks are very small compared to the CeO2 

peaks since this sample contained only 5 % Au. Also, this means that Au is well dispersed 

within the CeO2. The Au peak broadening indicates small Au particles. 

 Laser vaporization from of a 5 % Au/CeO2 target within an Ar atmosphere resulted 

in the formation of two types of morphologies; small elongated particles which form 
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aggregates (web like morphology), and small Au nanoparticles (5-10 nm) deposited on the 

surface of larger (30-100 nm) support particles, as shown in the SEM micrographs of the 

Au/CeO2 nanoparticles in Figure 22. These results can be confirmed using the HRTEM 

micrographs shown in Figure 23. The HRTEM also show that small particles, which are 

believed Au, are setting on large spherical particles. In order to confirm these results, EDX 

spectra from different parts of the sample, were monitored and collected. The peak 

intensity of both Au and CeO2 are shown in Figure 24. The intensities of Au peaks in the 

whole particle are approximately 5 % with 95 % being CeO2 peaks. However, if we zoom 

on the spherical particle, the intensities of the Au peaks are decreased and there are mostly 

CeO2 peaks, which indicate that the large particles are mostly composed of CeO2 with a 

small portion being Au. On the other hand, if we zoom in the small particle that is setting 

on the surface of the spherical particle, the intensities of the Au peaks increased sharply 

and only a small signal is coming from CeO2. These results confirm that the Au particles 

(5-10 nm) are actually setting on large particles (30-500 nm) of CeO2. There are Ni peaks 

detected in EDX spectra that can be attributed to the grid used to hold the sample. 

 The surface of the 5 % Au/CeO2 was examined initially by low-resolution survey 

X-ray photoelectron spectroscopy scan to determine which elements were present, as 

shown in Figure 25. The sample surface contained various amounts of the following 

species: cerium as Ce+4, oxygen, carbon in as C-(C, H), C-O, and C=O, O-C=O, and traces 

of gold as Au°. The concentration of elements detected were 28.2 (Atom %) Ce, 45.4 

(Atom %) O, 26.0 (Atom %) Carbon, and 0.3 (Atom %) Au. High-resolution spectra were 

acquired to determine the binding energy (i.e., chemical state) and concentration of the 
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elements observed in the survey spectra. The high-resolution Ce 3d spectrum is shown in 

Figure 26. The high-resolution Ce 3d spectrum was consistent with the Ce+4 (including 

similar shake-up peaks) and a tiny bump at ~885.7eV, which may indicate the presence of 

a trace Ce+3 reported to have a binding energy of ~885.8 eV 99.  

 Two doublets were used in the curve fit of the Au 4f peak. One doublet at binding 

energies ~83.9 and ~87.6 eV was used to fit the Au°. The second doublet at ~85.2 and 

~88.9 eV was used to curve fit possibly a trace of Au+, as shown in Figure 27. Table 11 

summarizes the amount of Au0 and Au+ in 5 % Au/CeO2 nanoparticle catalyst using curve 

fitting of Au 4f peak obtained by X-ray photoelectron spectroscopy. Although some 

studies show that Au0 or Au+ or both are the active species for the CO oxidation reaction 

48,100,101, our results indicate clearly that Au0 and Au+ are the active species. Figure 28 

displays the catalytic activities of the Au/CeO2 nanoparticle catalyst prepared using the 

LVCC method in 1500 Torr Ar (run 1, run 2, and run 3). Table 12 summarizes the catalytic 

activities of the Au/CeO2 nanoparticle catalyst (run 1, run 2 and run 3). The conversion 

curve is shifted to a lower temperature region by 23 0C after the first run and the catalyst 

becomes very stable, run 2 and run 3 are identical. This shift in temperature could be 

related to improvement in the active site, which will be investigated thoroughly.  

3.2.7.1 Particle size effect 

To examine the effect of particle size on the catalytic activity, the catalytic 

activities of a physical mixture of 5% gold with CeO2 bulk powder (micron size) and 

Au/CeO2 nanoparticle catalyst prepared by the LVCC method after heat treatment (run 2) 
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were compared, as shown in Figure 29. It is clear that the catalytic activity of the Au/CeO2 

nanoparticle catalyst is higher than that of the bulk Au/CeO2 under similar conditions. 

Table 13 summarizes the catalytic activities of a physical mixture consisting of 5% gold 

with CeO2 bulk powder (micron size) and Au/CeO2 nanoparticles prepared by the LVCC 

method at 1500 Torr Ar. The 5% supported Au/CeO2 nanoparticles show a 3 % conversion 

at 28 0C, a 50% conversion at 90 0C, and reaches maximum conversion of 99.4 % at 233 

0C compared to the corresponding bulk mixture which reaches a 3 % conversion at 255 0C, 

and a maximum conversion of only 60% at temperatures near 600 0C. Particle size and the 

high surface area are not the only factors that affect the activity. There are more factors 

that need to be investigated. 

3.2.7.2 Au–CeO2 interaction 

 Metal-support interaction plays an important role in the catalytic activity. In the 

Au/CeO2 system, Au interacts with CeO2 and promotes the reduction of Ce+4 to Ce+3 and 

thus facilitates charge transfer from Au to Ce, which results in a higher oxidation state of 

Au and hence increases the oxygen storage capacity of CeO2. This leads to an increase in 

the activity of the catalyst. Figure 30 compares the activities of the Au/CeO2 nanoparticle 

catalyst prepared by the LVCC method with a physical mixture of 5 %Au and 95 %CeO2 

nanoparticles. Table 14 summarizes the catalytic activities of a physical mixture consisting 

of 5% gold with CeO2 nanoparticles and Au/CeO2 nanoparticles prepared by the LVCC 

method at 1500 Torr Ar. As expected, the activity of Au/CeO2 (prepared by the LVCC) is 

higher than the activity of the physical mixture of Au and CeO2 nanoparticles due to the 
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significant metal support interaction between Au and CeO2 in the Au/CeO2 nanoparticle 

catalyst. This effect is also investigated using the Temperature Programmed Reduction 

(TPR) experiments. Temperature Programmed Reduction (TPR) using H2 as a probe 

molecule is a unique technique to study ceria based materials. The results of the TPR study 

for bulk CeO2 and 5 % Au supported on a CeO2 nanoparticle catalyst are shown in Figure 

31. The CeO2 is reduced by H2 as shown in equation (3.1). 

 2(S) 2 2 (S)CeO  +  H    CeO  +  H2Oδδ −⎯⎯→  (3.1) 

The TPR study of CeO2 (bulk) showed the reduction of CeO2 takes place in two 

temperature regions. The first region is 144-251 0C with Tmax around 188 0C and the 

second region started at 373 
0C and had a Tmax around 480 0C. These reduction regions are 

characteristics of ceria and are assigned to the surface and the bulk respectively. These 

peaks correspond to the removing of surface oxygen at low temperatures and bulk oxygen 

at high temperatures. However, Au plays an important role in the low temperature 

reduction of CeO2. In the presence of Au, the reduction of ceria is facilitated by the gold. 

In a Au/CeO2 nanoparticle catalyst, there is a somewhat similar behavior as the bulk ceria, 

but there is a slight shift to a lower temperature region (25-219 0C) with Tmax around 151 

0C due to the presence of Au which weekend the CeO2 surface oxygen bonding. The 

temperature at which the Au-CeO2 reaction with H2 starts up (Tup) is 250C. The high 

temperature CeO2 peak is shifted to lower temperature region with Tmax around 451 0C. A 

new feature appears at temperature region (219 -385 0C), which is believed to be coming 

from the reduction of Ce-Au-O species. The presence of Ce-Au-O is supported by XPS 

data which shows the presence of traces of Ce+3 and Au+. The reduction Ce-Au-O enhances 
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the redox activity of Au-CeO2. These results agree well with the conversion curve of this 

catalyst. From TPR results, it can be concluded that there is a significant Au-CeO2 

interaction in Au/CeO2 nanoparticle catalyst prepared by the LVCC method. 

3.2.7.3 Effect of pre-treatment  

 The Au/CeO2 nanoparticle catalyst shows enhanced activity after the heat treatment 

in CO/O2 mixture (run 2and run 3) over the fresh Au/CeO2 nanoparticle catalyst (run 1), as 

indicated Figure 28. XRD patterns of Au/CeO2 before catalysis and Au/CeO2 catalyst after 

catalysis (run2 and 3) are shown in Figure 32. Some of the characteristic peaks of CeO2 

appear to have a broad shape which indicates the presence of small crystalline CeO2 

particles. Au peaks are broad peaks with low intensities due to their small particle size and 

poor crystallinity. The diffraction patterns of Au/CeO2 after catalysis denotes, beside more 

crystallinity, the presence of higher intensity peaks related to Au at 2θ = 38.2 , 44.5, 

64.7and 77.7 corresponding to the (111), (200), (220), (311) planes. Figure 33 shows TEM 

micrographs of the Au/CeO2 nanoparticle catalyst before and after heat treatment. The 

micrographs show that Au particles are well dispersed in CeO2. However, Au particles 

appear more aggregated after catalysis, which appears in the intense dark zones. Although 

the particle size is hard to be estimated due to the complicated morphology of the sample 

after catalysis, TEM micrographs before and after catalysis indicates that the particle size 

is (5-10 nm) as shown in Figure 34. Furthermore, two types of morphologies are observed 

after catalysis due to heat treatment in oxidizing and reducing atmosphere. In the first 

morphology Au is dispersed on the surface of an irregular shape of CeO2, which is denoted 
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to the precipitation of Au from a solid solution of Au and CeO2.In the other morphology, 

the shape of the particles changed from spherical to cubes and unsymmetrical shapes 

which were altered by the CO oxidation reaction. This change of particle shape has been 

observed for supported Pt particles on CeO2 model catalyst reported by Johansson et.al 102 

and they attributed this change in morphology to faceted behavior of Pt.  

 Based on these results, it can be concluded that the enhancement of the catalytic 

activity of Au/CeO2 nanoparticle catalyst is not only due to the removing of moisture as 

anticipated earlier; but also as a result of structural change of the catalyst. 

 The pre-treatment effect on the Au/CeO2 nanoparticle catalyst was explored by 

evaluating the catalytic performance of the Au/CeO2 nanoparticles after heat treatment at 

300 o C in He atmosphere and comparing it to the catalytic performance of untreated 

Au/CeO2 nanoparticles, as shown in Figure 35. The activities of untreated Au/CeO2 

catalyst and after heat treatment are summarized in Table 15. Although the activity of the 

treated sample in run 1 is similar to the activity of run 2 of untreated sample, as expected, 

run 2 and run 3 of the treated sample show relatively higher conversion at lower 

temperatures than the untreated sample. The differences in the activities of both samples 

are related to the gas that is used in the heat treatment. When the sample is treated in a He 

atmosphere, the catalyst is reduced as result of the heat and becomes very stable. In the 

case of untreated sample, the catalyst is heated in CO/O2 mixture where the catalyst is 

reduced and oxidized at the same time.  
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3.2.7.4 Stability and aging effect  

 It is a well known fact that the catalytic activity of a catalyst decreases with time 

due to the deposition of moisture and hydrocarbons on the surface of the catalyst, as 

indicated in the XPS results of freshly prepared samples, which block the active site for the 

CO oxidation reaction. To investigate the effect of aging on the catalytic activity of the 

Au/CeO2 catalyst, we prepared 30 mg of Au/CeO2 using the LVCC method and divided 

the sample into 3 parts, each part being 10 mg. The catalytic activities of the first part were 

measured as soon as the particles were prepared, the second part was measured after one 

week, and the third part after one month. The catalytic activities of untreated (run 1) 

samples as a function of time are shown in Figure 36. The catalytic activities of the 

samples after heat treatment are shown in Figure 37. Table 16 summarizes the catalytic 

activity of the Au/CeO2 catalyst as prepared and after heat treatment (run1 and run 2) as a 

function of time. It is clear that the conversion curve of the first run in all samples is 

shifted to a higher temperature region by 80 oC after one month of aging while the 

conversion curve in the second run in all samples is shifted to a higher temperature region 

by approximately 20 o C. This shift in temperature could be attributed to the deposition of 

moisture hydrocarbons from the air. The conversion curve in all the samples is shifted to a 

lower temperature in the second run as a result of removing these species and improving 

the active site beside the heat treatment effect on the catalyst. 

 Although the heat treatment of the Au/CeO2 results in increasing the catalytic 

activity and the stabilizing the active site, the stability of treated and untreated samples 

show different behaviors after one day of aging. First the catalytic activity of the untreated 
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sample was measured after run 1, run 2 and run 3 on the same day. The sample was then 

left in the reactor overnight and the catalytic activity was measured after run 1, run 2 and 

run 3. Figure 38 compares the catalytic activity of Au/CeO2 as prepared and after one day 

aging. Table 17 summarizes the catalytic activity of the same untreated sample as prepared 

and after one day of aging. It is obvious that the activity of the untreated sample is 

increased after multiple runs in the same day. After one day of aging, the catalytic activity 

increased for the first, the second, and the third run. These results can be explained by the 

fact that the heat treatment in CO/O2 atmosphere results in a reduction of Au and CeO2. 

Since Au is hard to oxidize. Meanwhile, CeO2 can alternate between oxidation and 

reduction cycles and has high oxygen storage capacity. Furthermore, Au-Ce-O species are 

reduced and a major part is reoxidized, which leaves part of this species in reduced form. 

The more the sample is used, the more of these species are reduced. However, the activity 

of Au/CeO2 on the second day for run 1 is decreased compare to run 3 on first day is due 

to the absorption of moisture the enhanced activities of run 2 and run 3 on the second day 

confirm this. For the treated samples, the catalytic activity remains the same after one day 

of aging; since the catalyst is totally in the reduced form as shown in Figure 39. Table 18 

summarizes the catalytic activity multiple of Au/CeO2 as prepared and treated at 300 o C in 

He and after one day of aging.  

The heat treatment method and atmosphere can greatly affect the stability of the 

Au/CeO2 catalyst. Based on the catalytic activity results of both heating methods (heating 

in He or CO/O2 atmospheres), the catalyst shows higher stability after heat treatment in He 

than in CO/O2 mixture.  
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 To investigate the long term stability and aging under dynamic conditions, the 

catalytic activity of the Au/CeO2 catalyst was measured as a function of time by keeping 

the temperature constant at 144 o C, where the conversion is 80%, and 186 o C, where the 

conversion is 100%, while flowing CO/O2 mixture over Au/CeO2, as shown in Figure 40. 

It is clear that the Au/CeO2 nanoparticle catalyst is a very stable catalyst. This stability is 

demonstrated by the constant conversion percentage of 100 % even after 16 h of 

continuous use. 

3.2.8 Catalytic activity of 5 % Au/CeO2 in presence of Volatile Organic Compounds 

(VOC) 

 In any combustion system, there are significant amounts of other toxic gases, 

besides CO, such as nitric oxide (NOx), butadiene, and isoprene. Catalytic activity of the 5 

% Au/CeO2 nanoparticle catalyst is investigated in the presence of 1000 ppm of butadiene 

and in the presence 1000 ppm of isoprene. Figure 41 compares the mass spectrum at 

different temperatures of (3.4 % CO, 20 % O2 in He mixture) in the presence of 1000 ppm 

butadiene without a catalyst and with the 5 % Au/CeO2 catalyst. Based on the mass 

spectrum of the CO/O2 mixture with butadiene without catalyst as a function of 

temperature, it is clear that the concentrations of all the gases remain constant. 

Furthermore, there is no evidence of the formation of carbon dioxide. In the presence of 

Au/CeO2 catalyst, it is clear that the CO Concentration is decreased and that CO2 is formed 

and at temperatures above 200 o C, CO is completely converted to CO2. Also, the 

concentration of butadiene is decreased as the temperature is increased and at 200 o C the 
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butadiene concentration goes to zero and the formation of H2O is seen. The same behavior 

is observed for CO oxidation in the presence of isoprene, with exception of a small amount 

of isoprene present at higher temperatures. Figure 42 compares mass spectrum at different 

temperatures of (3.4 % CO, 20 % O2 in He mixture) in the presence of 1000 ppm isoprene 

without catalyst and with the 5 % Au/CeO2 catalyst. The catalytic performance of the 

Au/CeO2 catalyst in the presence of isoprene and butadiene is measured using flow reactor 

mass spectrometry as a function of the catalyst temperature. Figure A11 describes the 

catalytic activity of the 5 % Au/CeO2 catalyst in presence of 1000 ppm butadiene and in 

the presence of 1000 ppm isoprene. It clearly indicated that the Au/CeO2 catalyst loses 

some of its activity because of the presence of small concentrations of isoprene and 

butadiene. The conversion curve is shifted upward to a higher temperature region. The 

light-off temperature is shifted from 72 o C to 206 o C in the presence of butadiene and 170 

o C in the presence of isoprene. The 50 % conversion percentage is shifted from 120 o C to 

255 o C in the presence of butadiene and 327 o C in the presence of isoprene. The maximum 

conversion is shifted from 97 % at 183o C to 99 % at 344 o C in the presence of butadiene, 

and to 88 % at 466 o C in the presence of isoprene. Figure A11 compares the catalytic 

activities of 5 % Au/CeO2 with and without the presence of 1000 ppm butadiene and 1000 

ppm isoprene. These results are attributed to the combustion of butadiene and isoprene to 

CO2 and H2O, as shown in the mass spectrum, however, butadiene is completely 

combusted at temperatures higher than 206 o C, which explains the higher conversion 

percentage of CO to CO2 where part of CO2 is a result of butadiene combustion products. 
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Isoprene is not completely combusted; this can be seen in the conversion curve and the 

mass spectrum. 

 Finally, the 5 % Au/CeO2 nanoparticle catalyst can be an active catalyst for 

selective CO oxidation at temperatures below 300 o C even in the presence of VOC. 

Furthermore, this catalyst shows great promise for the low temperature combustion of 

VOC such as butadiene and isoprene. 
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Figure 21: X-ray diffraction pattern of 5 % Au/CeO2 as prepared by the LVCC method at 
200 Torr. 
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Figure 22: SEM micrograph of Au/CeO2 nanoparticles containing 5 % Au as prepared by 
the LVCC method in 200 Torr Ar. 
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Figure 23: HRTEM micrographs of Au/CeO2 nanoparticles contain 5 % Au as prepared by 
the LVCC method in 200 Torr Ar. 
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Figure 24: Energy Dispersed X-ray (EDX) of Au/CeO2 nanoparticles contains 5 % Au as 
prepared by the LVCC method in 200 Torr Ar. 
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Figure 25: Low-resolution Survey X-ray photoelectron scan of 5 Au/CeO2 nanoparticles as 
prepared by the LVCC method. 
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Figure 26: High resolution X-ray photoelectron Ce 3d spectrum of 5 Au/CeO2 

nanoparticles as prepared by the LVCC method. 
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Figure 27: High resolution X-ray photoelectron Au 4f peak spectrum of 5 Au/CeO2 
nanoparticles as prepared by the LVCC method. 
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Table 11 summarizes the amount of Au0 and Au+ in the 5 % Au/CeO2 nanoparticle catalyst 
using curve fitting of Au 4f peak obtained by X-ray photoelectron 
spectroscopy. 

 

 

 
 
 
 

 

Species % of Au Atom% Au 

Au 0 94 0.282 

Au
+1

 6 0.018 
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Figure 28: Catalytic activity of Au/CeO2 nanoparticle catalyst prepared using the LVCC 

method in 1500 Torr Ar after multiple runs (run 1, run 2, and run 3). 
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Table 12 summarizes catalytic activities of the Au/CeO2 nanoparticle catalyst (run 1 , run 
2, and run 3). 

 

Maximum Conversion 
(%) 

 

 
Sample 

5 %Au/CeO2 

 
3% 

Conversion
Light-off 

Temp. (o C)

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Run 1 50.2 118.2 233.2 99.5 

Run 2, and 3 27.5 90.0 210.9 99.4 
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Figure 29: Comparison between the catalytic activities of a physical mixture consisting of 
5% gold with CeO2 bulk powder (micron size) and Au/CeO2 nanoparticles 
prepared by the LVCC method at 1500 Torr Ar after heat treatment (run 2). 
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Table 13 summarizes the catalytic activities of a physical mixture consisting of 5% gold 
with CeO2 bulk powder (micron size) verses Au/CeO2 nanoparticles prepared 
by the LVCC method at 1500 Torr Ar. 

 

Maximum Conversion 
(%) 

 

 
Sample 

5 %Au/CeO2 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Bulk  252.5 476.9 502.4 58.7 

Nano  27.5 90.0 210.9 99.4 
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Figure 30: Comparison between the catalytic activities of a physical mixture consisting of 

5% gold with CeO2 nanoparticles verses Au/CeO2 nanoparticles prepared by 
the LVCC method at 1500 Torr Ar after heat treatment. 
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Table 14 summarizes the catalytic activities of a physical mixture consisting of 5% gold 
with CeO2 nanoparticles and Au/CeO2 nanoparticles prepared by the LVCC 
method at 1500 Torr Ar after heat treatment.  

 
 

Maximum Conversion 
(%) 

 

 
Sample 

5 %Au/CeO2 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

LVCC  27.5 90.0 210.9 99.4 

Pmix  356.0 573.3 600 56.5 
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Figure 31: TPR patterns of CeO2 bulk powder and Au/CeO2 prepared by the LVCC 

method. 
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Figure 32: XRD diffraction patterns of Au/CeO2 nanoparticle catalyst before and after 

catalysis. 
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Figure 33: TEM micrographs of Au/CeO2 catalyst a) before catalysis and b) after catalysis. 
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Figure 34: HRTEM of Au/CeO2 catalyst a) before catalysis b), c) after catalysis. 
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Figure 35: Comparison between activities of treated and untreated Au/CeO2 nanoparticle 

catalyst after multiple runs. 
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Table 15 summarizes the activities of treated and untreated Au/CeO2 catalyst after multiple 
runs. 

 
 

Maximum Conversion 
(%) 

 

 
Sample 

5%Au/CeO2 

 
3% 

Conversion 
Light-off 

Temp.(o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Untreated 
Run 1 

50.2 118.2 233.2 99.5 

Untreated 
Run 2, 3 

27.5 89.95 210.9 99.4 

Treated 
Run 1 

< 25 80.7 170.2 96.3 

Treated 
Run 2, 3 

< 25 83.2 210.9 98.9 
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Figure 36: Catalytic activity of Au/CeO2 as prepared by LVCC (run 1) as a function of 

time. 
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Figure 37: Catalytic activity of Au/CeO2 prepared by LVCC after heat treatment (run 2) as 

a function of time. 
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Table 16 summarizes the catalytic activity of Au/CeO2 catalyst as a function of time. 

 

Maximum Conversion 
(%) 

 

 
Sample 

5%Au/CeO2 

 
3% 

Conversion
Light-off 

Temp.(o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

As prepared 
Run 1 

50.2 118.2 233.2 99.5 

As prepared 
Run 2 

27.5 89.95 210.9 99.4 

After 1 week 
Run 1 

37.9 93.3 162.9 100.0 

After 1 week 
Run 2 

37.9 93.3 188.4 99.6 

After 1 month 
Run 1 

77.3 162.2 223.1 100 

After 1 month 
Run 2 

32.6 104.5 202.1 100 
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Figure 38: Catalytic activity of same untreated sample as prepared and after one day of 

aging. 
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Table 17 summarizes the catalytic activity of the same untreated sample as prepared and 
after one day of aging. 

 
 

Maximum Conversion 
(%) 

 

 
Sample 

5%Au/CeO2 

 
3% 

Conversion 
Light-off 

Temp.(o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Day 1 
Run 1 

50.2 118.2 233.2 99.5 

Day 1 
Run 2, 3 

27.5 89.95 210.9 99.4 

Day 2 
Run 1 

38.6 105.8 208.9 100.0 

Day2 
Run 2, 3 

27.5 74.0 227.4 99.2 
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Figure 39: The catalytic activity of multiple runs of the Au/CeO2 catalyst treated 300 0C in 

He as prepared and after one day of aging. 
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Table 18 summarizes the catalytic activity of multiple runs of the Au/CeO2 catalyst treated 
300 0C in He as prepared and after one day of aging. 

 

Maximum Conversion 
(%) 

 

 
Sample 

5%Au/CeO2 

 
3% 

Conversion 
Light-off 

Temp.(o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Day 1-Run 1 < 25 80.7 170.2 96.3 

Day 1-Run 2 < 25 83.2 210.9 98.9 

Day 1-Run 3 < 25 83.2 237.7 98.9 

After 1day 
Run 1 

< 25 84.9 185.3 95.5 

After 1day 
Run 2 

31.6 93.3 253.8 99.4 

After 1day 
Run 3 

31.6 94.2 243.1 100.0 
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Figure 40: Long term stability of 5 % Au / CeO2 (1500 Torr Ar) at 80 % and 100 % 

conversion. 
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Figure 41: Mass spectrum at different temperatures of (3.4 % CO, 20 % O2 in He mixture) 
in presence of 1000 ppm butadiene a) Without catalyst. b) With 5 % Au/CeO2 
catalyst. 
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Figure 42: Mass spectrum at different temperatures of (3.4 % CO, 20 % O2 in He mixture) 
in presence of 1000 ppm isoprene a) without catalyst. b) With 5 % Au/CeO2 
catalyst. 
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4 : Comparison between Au/CeO2 nanoparticle catalysts prepared by Physical 

and Chemical Methods  

4.1 Introduction 

 The Au/CeO2 nanoparticle catalyst has been used in a variety of reactions, such as 

water-gas reaction 87,103, the catalytic combustion of VOC 94, and low temperature CO 

oxidation 90,92. Au/CeO2 nanoparticle catalysts have been prepared chemically by a variety 

of methods, the most previous work has been carried out in liquid mixtures or solutions 87-

91,93.  

 Au/CeO2 catalysts are very sensitive to the preparation method. The preparation 

method can affect the catalytic activity by determining the Au precursor (metallic or Au 

ion), as in the case of the classical deposition-precipitation method 104,105, and the method 

to introduce Au onto the support (e.g., chemical methods 87-91,93 such as impregnation, 

precipitation, co-precipitation and precipitation-deposition or physical methods such as 

laser ablation and ion implantation). These factors can affect the particle size and other 

variables such as the metal support interaction. Pretreatment conditions can also change the 

stability of catalytic activity, depending on the support nature, increasing the metal-support 

interaction and the preparation method which determines the oxidation state of the metal 

the nature of the actives in this catalyst is not yet resolved. Some studies suggest that Au0 

is the active site 94. Others indicate the role of Au+ and Au+3 species 90,92. Most active 

samples can be obtained without temperature heat treatment (calcinations) or calcinations 

at low temperatures 73,106. Au nanoparticles can be generated by the mean of physical 

methods where the vapor resulting from the vaporization of bulk Au result in vapor 
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consists of Au atoms in the gas phase (which is later  condensed under controlled 

conditions to form nanoparticles 107) or by chemical methods where Au compounds are 

used as a starting material, linked with reduction steps.  

 The advantages of the vapor phase synthesis are the contamination-free products 

(as compared to Chemical reductions in solutions), the elimination of the chemical 

precursors and solvents, and in most cases, the production of highly crystalline 

nanoparticles. 

In this chapter, the catalytic activities of Au/CeO2 prepared from the vapor phase 

(LVCC) and chemical rout deposition-precipitation technique (DP) will compared.  

4.2 Experimental Results  

4.2.1 Surface area and particle size 

 Although the Au/CeO2 prepared by the LVCC method shows higher catalytic activity 

than other conventional catalysts, the LVCC method has disadvantages, such as low yield 

as compared to chemical methods. As an alternative method to produce a large amount of 

the catalyst, 5% Au/CeO2 was prepared using chemical methods, in this case Deposition- 

Precipitation method (DP). 

 The X-ray diffraction patterns of the Au/CeO2 nanoparticle catalyst as prepared by 

the LVCC and deposition-precipitation (DP) methods are shown in Figure 43. Although 

the X-ray diffraction pattern for Au/CeO2 shows crystalline CeO2 in both catalysts, the 

CeO2 peaks of Au/CeO2 (DP) catalyst has higher intensity than Au/CeO2 (LVCC) catalyst. 

Furthermore, the Au/CeO2 (LVCC) peaks are more broadened than Au/CeO2 (DP) peaks. 
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This result indicates that the Au/CeO2 (DP) is more crystalline than the Au/CeO2 (LVCC) 

and that the particle size of the Au/CeO2 (LVCC) catalyst is smaller. Owing to the small 

size of the nanoparticles, the BET (Brunner–Emmett–Teller) surface area of the LVCC 

catalyst is very high at 84.5 m2/g, compared to the DP catalyst which has a surface area of 

23.93 m2/g. The X-ray diffraction patterns of the Au/CeO2 (DP) nanoparticle catalyst does 

not show Au peaks while the Au/CeO2 (LVCC) catalyst shows small broad Au peaks were 

at least Au (111) peak can be distinguished. These results can be attributed to the high 

disparity of Au particles, the less metallic Au in the Au/CeO2 (DP) nanoparticles, and the 

presence of less dispersed crystalline metallic Au particles in the Au/CeO2 (LVCC) 

nanoparticles.  

 Figure 44 shows SEM micrographs of the Au/CeO2 (LVCC) and Au/CeO2 (DP) 

morphologies. There are two types of morphologies that can be distinguished for the 

LVCC and DP samples. The LVCC has elongated particles with web-like structures where 

both Au and CeO2 are in the nanoscale and spherical where metallic Au nanoparticles is 

dispersed on large CeO2 particles. The morphology of Au/CeO2 (DP) is different, though 

the metallic Au nanoparticles were never observed on the CeO2 particles. As shown in 

Figure 45, the Transmission Electron microscope (TEM) of the Au/CeO2 ‘as prepared’ of 

both samples confirms the X-ray diffraction results and shows that the LVCC sample has 

small Au, CeO2 elongated particles (2-5 nm), and Au particles (5-10 nm) dispersed on 

large CeO2 particles (30-500 nm). It is important to note that these results are confirmed by 

EDS. In the chemical method the phase contrast within the agglomerates is characteristic 
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of disordered, or semi-crystalline, material where the metallic Au nanoparticles were never 

observed either by X-ray diffraction patterns or TEM. 

4.2.2   Oxidation state of Au and Au-CeO2 interaction 

X-ray and TEM are used to characterize the bulk and do not provide a useful 

information about the active site for CO oxidation in the catalyst. In order to probe the 

active site, a surface sensitive technique is needed. X-ray Photoelectron Spectroscopy is a 

good technique to study the catalyst surface and determine the oxidation state of Au. XPS 

analysis of 5% Au/CeO2 prepared by physical and chemical methods Ce 3d and Au4f.  

Figure 46 shows high-resolution Ce 3d spectrum which was consistent with Ce+4 

(including similar shake-up peaks) for both samples. The LVCC sample has a tiny bump at 

~885.7eV which may indication of the presence of Ce+3. 

Figure 47 shows a curve fitting of Au4f spectrum of the Au/CeO2 nanoparticle 

catalyst prepared by physical and chemical methods. The curve fitting of Au4f spectrum of 

both samples indicates that both contain mostly Au0 and small amounts of Au+ species. 

Au/CeO2 prepared by the chemical method has a higher % of Au and contains more Au+ 

than Au/CeO2 prepared by the physical method, as shown in Table 19. 

 Based on XPS and TEM results, it can be concluded that the Au in both samples is 

amorphous, most of Au is in the metallic state Au0, and it forms a solid solution of Au and 

CeO2. However, Au obtained by the chemical method is more amorphous and part of the 

Au exists in the form of AuOH, with an oxidation state of +1 108. 
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 Oxidation state of the Au is directly related to the interaction between Au and 

CeO2. TPR is used to study the interaction between Au and CeO2 in both samples. Figure 

48 is TPR patterns of Au/CeO2 prepared by physical and chemical methods. The 

temperature at which Au-CeO2 reacts with H2 is 250C. The high temperature CeO2 peak is 

shifted to a lower temperature region with Tmax around 451 0C compared to high 

temperature CeO2 peak. A new feature appears at temperature region (219 -385 0C) is 

believed to come from the reduction of Ce-Au-O species. The presence of Ce-Au-O is 

supported by the XPS data which shows the presence of traces of Ce+3 and Au+. The 

reduction of Ce-Au-O enhances the redox activity of Au-CeO2. From these results it can be 

concluded that there is weak metal-support interaction in the Au/CeO2 (LVCC) method. 

However, in the case of the Au/CeO2 (DP) catalyst, all the ceria, including the bulk ceria 

reduces at 50 oC and below. The two peaks that characterize the ceria almost disappeared 

and a new peak formed at approximately room temperature. The high intensity peak at 

room temperature is attributed to the reduction of Au+ to Auo by removing the OH group. 

This indicates that this catalyst has a strong metal-support interaction (SMSI) compared to 

the Au/CeO2 (LVCC) catalyst. 

4.2.3 Catalytic activity  

 The activity of the Au/CeO2 catalysts prepared by physical and chemical methods 

is measured as prepared (run 1). Figure 49 is a comparison between Au/CeO2 activities 

prepared by the two methods. The light off temperature of Au/CeO2 (DP) is 0.1o C and 

reaches a full conversion at approximately 110o C compared to Au/CeO2 (LVCC) which 
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has a light-off temperature of 50o C and reaches a full conversion at 233o C. Table 20 

summarizes the activities of both methods. Heat treatment in the CO/O2 mixture (run 2) 

results in a shift in the light-off temperature for both catalysts (from 50o C to 27o C for the 

LVCC catalyst and from 0.1o C to -28o C for DP catalyst), as shown in Figure 50. Table 21 

shows the activities of Au/CeO2 prepared by physical and chemical methods after heat 

treatment in CO/O2 mixture (run 2). The shift in the light-off temperature can be attributed 

to the removal of the moisture; impurities such as hydrocarbon deposits from the catalyst 

surface, reduction of the catalyst by CO, and the precipitation of Au in the Au-CeO2 solid 

solution to the surface, which increases the metal support interaction. To understand the 

shift in the catalytic activity curve to the lower temperatures, both catalysts are 

characterized using X-ray diffraction and HRTEM after catalysis. Figure 51 shows X-ray 

diffraction patterns of Au/CeO2 prepared by both methods after the heat treatment in 

CO/O2 mixture (run 2). As expected the CeO2 support becomes crystalline in both 

catalysts. Strong reflection of crystalline metallic Au can be observed in both catalysts by 

the presence of Au (111), Au (200), and Au (311) planes. After heat treatment in the 

CO/O2 mixture, as shown in Figure 52, both catalysts develop a completely different 

microstructure, a dispersion of metallic Au nanoparticles having (5-10 nm) in the LVCC 

catalyst, and (3-7 nm) in the DP catalyst. These particles are supported on highly 

crystalline CeO2 particles with sizes ranging from 50-500 nm. 

 Deposition Precipitation method (DP) shows activity below room temperature 

similar to Au/TiO2 catalysts reported by Haruta 47 and Au/Fe2O3 catalysts reported by 

Deevi et a.l 109. Reaction mechanisms of CO oxidation on Au/TiO2 catalysts are reported 
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by Haruta et al. 47. He suggests that the reaction take place on Au surfaces at the steps, 

edges, and corners of Au particles with activation energy of 0 kJ/mol (below 300 K). At 

temperatures above 300 K, the reaction takes place at the perimeter interfaces, were CO 

adsorbed on the surfaces of Au nanoparticles and the molecular oxygen adsorbed at the 

support interface with activation energy of 0 kJ/mol, and it proceeds faster. 

 In addition to the XPS and TPR results, and based on the results obtained by Haruta 

47, The difference in the catalytic activity of Au/CeO2 catalysts prepared by physical and 

chemical methods in the way that Au nanoparticles set on the support and the length of the 

interface between them can be explained. In the physical method, the interface is shorter 

than in the chemical method. As a result, the interaction is stronger in the chemical 

method, which results in higher activity. Figure 53 shows the proposed scheme of CO 

oxidation reactions on Au/CeO2 prepared by both methods along with the proposed 

morphologies. 

4.2.4 Stability  

Finally, the catalytic activity of Au/CeO2 catalysts prepared by physical and 

chemical methods was measured as a function of time by keeping the temperature constant 

at 186 o C, which corresponds to 100% conversion while CO/O2 mixture is flowing over 

Au/CeO2 as shown in Figure 54. It is clear that Au/CeO2 nanoparticle catalysts prepared by 

physical and chemical methods show very good stability for more than 14 h. This stability 

is demonstrated by the constant conversion percentage of 100 % even after 16 h of 

continuous conversion. 
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Figure 43: X-ray diffraction patterns of Au/CeO2 as prepared by the physical method 

(LVCC) and the chemical method (Deposition-Precipitation (DP). 
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Figure 44: SEM micrographs of Au/CeO2 nanoparticle catalysts as prepared by the LVCC 

method and the Deposition-Precipitation method (DP). 
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Figure 45: TEM micrographs of Au/CeO2 as prepared by: a) Physical method (LVCC). b) 

Chemical method (DP). 
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Figure 46: High-resolution Ce 3d spectrum of a) 5% Au/CeO2 (LVCC) b) 5% Au/CeO2 

(Dp). 
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Figure 47: Curve fitting of Au4f spectrum of Au/CeO2 prepared by a) LVCC method b) 

DP method. 
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Table 19 compares the total Atom % of Au (Au0 and Au+) at the surface of Au/CeO2 
catalysts prepared by LVCC and DP methods. 

 

Sample Total Au 
(Atom %) 

Au0 
(Atom %) 

Au+ 
Atom % 

Au/CeO2 
(LVCC) 

0.3 0.282 0.018 

Au/CeO2 
(DP) 

1.2 0.8  0.4 
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Figure 48: TPR patterns of CeO2 bulk powder and Au/CeO2 prepared by physical and 

chemical methods. 
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Figure 49: Comparison between Au/CeO2 activities as prepared (run 1) by chemical and 

physical methods 
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Table 20 summarizes the catalytic activities of Au/CeO2 as prepared (run1) by chemical 
and physical methods.  

 
 

Maximum Conversion 
(%) 

 

 
Sample 

5%Au/CeO2 

 
3% 

Conversion 
Light-off 

Temp.(o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Physical 
(LVCC) 

50.2 118.2 233.2 99.5 

Chemical 
(DP) 

0.1 14.7 110.0 100.0 
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Figure 50: Comparison between Au/CeO2 activities as prepared (run 2) by chemical and 

physical methods. 
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Table 21 summarizes the catalytic activities of Au/CeO2 as prepared (run2) by chemical 
and physical methods. 

 
 

Maximum Conversion 
(%) 

 

 
Sample 

5%Au/CeO2 

 
3% 

Conversion 
Light-off 

Temp.(o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Physical 
(LVCC) 

27.5 89.95 210.9 99.4 

Chemical 
(DP) 

-28.3 19.2 178.3 100.0 
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Figure 51: X-ray diffraction patterns of Au/CeO2 catalysts prepared by physical and 

chemical methods after heat treatment in CO/O2 mixture (run 2). 
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Figure 52: TEM of Au/CeO2 catalysts prepared by a) Physical method (LVCC) b) 

chemical method (DP). 
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Figure 53: The proposed scheme of CO oxidation reaction on Au/CeO2 catalyst a) prepared 

by LVCC method b) deposition-precipitation method proposed by Haruta 47. 
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Figure 54: Long term stability of 5 % Au / CeO2 and 100 % conversion (T= 186 o C) 

prepared by physical and chemical methods. 
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5 : Low temperature CO oxidation Au and Cu and AuCu alloy catalysts. 

5.1 Introduction 

 Oxidation of carbon monoxide has been carried out on various catalysts including 

precious metals, perovskite-type, and transition metal catalysts110-114. However, the high 

cost of precious metals and their sensitivity to sulfur poisoning motivated researchers to 

search for new catalysts. The reactivity of adsorbed oxygen on metal surfaces has received 

considerable interest in relation to heterogeneous catalysis 115. In contrast to the high 

reactivity of noble metals, transition metals like Cu are regarded to be much less reactive 

because stable oxide phases are easily produced due to their large oxygen affinity. The 

activity of Cu nanoparticle catalysts for CO oxidation is comparable with that of the noble 

metal Pd catalysts 116. It was reported that CO oxidation proceeded on metallic Cu films at 

473-623 K, with smaller activation energy than those for Pt and Pd 117. The catalytic CO 

oxidation on Cu (110) in a mixture of CO and O2 also proceeds at low temperatures until 

oxygen coverage increased to cover the surface with the produced -Cu-O- chains as 

reported by Sasaki et al 118. The catalytic activity of Cu nanoparticles is enhanced after the 

catalytic reaction due to the oxidation of Cu 116. The origin of CO oxidation over metallic 

Cu powders is due to a synergistic effect of rising temperature due to heat generation from 

Cu oxidation as well as CO oxidation over the partially oxidized copper species. The 

activity of copper oxide species can be elucidated in terms of species transformation and 

the change in the number of surface lattice oxygen ions. The non-stoichiometric metastable 

copper oxide species formed during reduction is active in the course of CO oxidation 

because of its excellent ability to transport surface lattice oxygen. Consequently, the 
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metastable cluster of CuO is more active than CuO, and the activity is significantly 

enhanced when non-stoichiometric copper oxides are formed 119. Although many studies 

have reported Cu based catalysts for CO oxidation, most of these studies do not 

differentiate between the catalytic activity of Cu and CuO since Cu is converted to CuO 

after the CO oxidation reaction. Supported Cu nanoparticles exhibit higher activity than the 

unsupported Cu catalysts due to the synergetic interaction with the metal oxide supports 

120-126. Among these supports is CeO2, which is used as a promoter in the three-way 

catalyst (TWC) used in automotive emission control systems and can be used as a support 

for many oxidation catalysts 80,81. For example, the addition of trace amounts of Ce can 

increase the Cu activity 116. The activity of Cu nanoparticle catalysts depends on many 

factors, other than the supports, such as oxidation atmosphere, and the preparation process. 

However, many preparation methods focus on the chemical synthesis of these catalysts 127-

129 or physical synthesis, such as arc or thermal plasma method 130. 

Alloying is a phenomenon that can either improve the catalytic properties of the 

original single-metal catalysts or create new properties which may not be achieved by 

either of the individual metal catalysts131. Bimetallic systems have long commanded 

considerable interest in the study of heterogeneous catalysis. The addition of a second 

dissimilar metal often modifies the catalytic behavior of the first, in many cases enhancing 

the stability, activity, and/or selectivity beyond that of either catalyst alone 132-134. 

Although supported gold catalysts have been extensively investigated for low-

temperature CO oxidation 47,73,113,135, an alternative way to modify the gold-based catalysts 

is to search for a second metal such as Cu that can form an alloy with gold and possess 
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stronger affinity toward O2 than gold. When two different metal atoms are in intimate 

proximity to each other, as in an alloy, the activated O2 can easily react with the activated 

CO at a neighboring gold atom to produce CO2. Häkkinen et al. reported that doping Au 

with Sr significantly changes the bonding and activation of O2 compared with that in the 

pure gold, resulting in enhanced activity for CO oxidation 136. The catalytic activity of 

AuAg has been investigated by Wang et al 137. Guczi et al. investigated the Au–Pd 

bimetallic system for CO oxidation 138. They investigated the effect of the support on the 

catalytic activity of Au-Pd alloy and found that when supported on SiO2, the activity of the 

bimetallic catalyst is higher than the Pd/SiO2 catalyst. When supported on TiO2, the 

bimetallic catalyst exhibited a slightly synergistic effect. This may due to the fact that Pd 

adsorbs O2 very strongly and weakens the role of gold.  

It is known that the electron transfer from metal to O2 is a key factor in the 

chemisorption of oxygen on a metal surface 139. Electron transfer is difficult on the Au 

(111) surface, since the gold surface has a high work function 140. When compared to gold, 

Cu has a larger electron donating ability. It is known that the adsorption of O2 occurs most 

easily on Cu, next on Ag, but not on Au. On the other hand, both gold and copper are able 

to adsorb CO 140,141. Thus, combining Au with Cu may be an alternative catalyst with a 

higher activity for CO oxidation. Sra et al reported the synthesis of AuCu alloys 

nanoparticles for electronic applications 142. Based on the literature, the catalytic activity of 

AuCu alloys nanoparticles has not been investigated yet.  

 In this chapter, the catalytic activity of unsupported Cu nanoparticles, and Cu 

nanoparticles supported on metal oxide supports will be investigated. After determining 



www.manaraa.com

 139

the best support with the highest activity, the catalytic activity of the CuO nanoparticles 

supported on the same support will be compared. 

 Furthermore, the effect of the addition of Au to the Cu based catalyst on the 

catalytic activity both supported and unsupported will be examined. Two systems will be 

thoroughly studied. The first system is the physical mixture of Au and Cu both supported 

and unsupported. The second system is the alloying of Au and Cu both supported and 

unsupported. Finally, the catalytic activities of the AuCu physical mixture and the AuCu 

alloy for Co oxidation will be compared. 

5.2 Experimental Results 

5.2.1 Low temperature CO oxidation on Cu nanoparticles (unsupported) 

 Cu has a FCC crystal lattice structure similar to Au. Figure 55 shows the X-ray 

diffraction pattern of Cu nanoparticles prepared by LVCC. The typical characteristic 

planes (111), (200), (220) of FCC crystal lattice are retained in Cu nanoparticles, which is 

similar to Cu bulk structure. However, the diffraction peaks of Cu nanoparticles are 

broader compared to the bulk Cu, this broadening is due to their small particle size. The Cu 

nanoparticles have web-like morphology with (5-15 nm) particle size as shown in 

Transmission Electron Microscope (TEM) micrographs (Figure 56). The catalytic 

activities of Cu nanoparticles (as prepared by LVCC at 200 Torr Ar (run 1)) and after heat 

treatment in CO/O2 mixture (run 2) are shown in Figure 57. It is clear that the catalytic 

activity is increased after the heat treatment. The catalytic activities of Cu nanoparticles are 

summarized in Table 22. To investigate these results, the X-ray diffraction patterns were 
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measured before and after the CO oxidation reaction, as shown in Figure 58. Unlike the X-

ray diffraction patterns of Au nanoparticles after heat treatment, Figure 6 shows that Au 

does not oxidize after the CO oxidation reaction. However, X-ray diffraction patterns of 

Cu nanoparticles after heat treatment in CO/O2 mixture show typical characteristic planes 

of CuO. Based on these results, the enhanced activity was attributed to the oxidation of Cu 

to form small CuO nanoparticles, which is more active than Cu nanoparticles as reported 

by Liu et al.143. Since Cu is easily oxidized, as demonstrated in the previous results, and to 

eliminate the possibility of small leaks, the effect of pressure on the catalytic activity of Cu 

nanoparticles was studied. Figure 59 shows the catalytic activities of Cu nanoparticles as 

prepared by LVCC in 200 and 1500 Torr Ar. As expected, the catalytic activity of Cu 

nanoparticles prepared in 1500 Torr is higher than the corresponding Cu nanoparticles 

prepared in 200 Torr. It is important to point out that there is a phase transition at 212 oC 

which corresponds to the oxidation of Cu to CuO. The same behavior is observed in run 2, 

as shown in Figure 60. Table 23 summarizes the catalytic activities of Cu nanoparticles as 

prepared by LVCC in 200 and 1500 Torr Ar (run 1 and run 2). The catalytic activities of 

Cu nanoparticles after heat treatment in CO/O2 mixture was compared with the commercial 

nanophase CuO and CuO prepared from the evaporation of CuO target in 1500 Torr using 

the LVCC method as shown in Figure 61. It is clear that the catalytic activity of Cu 

nanoparticles after heat treatment in CO/O2 mixture is identical to nanophase CuO. 

However, the catalytic activity of CuO prepared by LVCC is less than the catalytic activity 

of nanophase CuO and Cu nanoparticles after heat treatment in CO/O2 mixture. These 

results are attributed to the formation of Cu2O and a CuO phase during the evaporation of 
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CuO target in the LVCC method and since Cu2O has lower oxidation state, it is less active 

than CuO for CO oxidation. 
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Figure 55: X-ray diffraction patterns of Cu nanoparticle catalysts as prepared by the LVCC 
method. 
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Figure 56: TEM micrographs of Cu nanoparticles as prepared by LVCC. 
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Figure 57: Catalytic activity of Cu nanoparticles as prepared by LVCC (run 1) and after 
heat treatment in CO/O2 mixture (run 2). 
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Table 22 summarizes the catalytic activities of Cu nanoparticles as prepared (run 1) and 
after heat treatment in CO/O2 mixture (run 2). 

 
 
 

Maximum Conversion 
(%) 

 

 
Sample 

 

 
3% 

Conversion
Light-off 

Temp. (o C) 

50 % 
Conversion
Temp. (o C) 

Temp. (o C) Conversion

Cu Nano (Run 1) 156.9 202.8 235.6 100.0 

Cu Nano (Run 2) 110.7 166.3 351.5 100.0 
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Figure 58: X-ray patterns of Cu nanoparticles before and after catalysis. 
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Figure 59: Comparison between the catalytic activities of Cu nanoparticles as prepared by 

LVCC at 200 and 1500 Torr (run 1). 
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Figure 60: Comparison between the catalytic activities of Cu nanoparticles prepared by 

LVCC at 200 and 1500 Torr  after heat treatment in CO/O2 mixture (run 2). 
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Table 23 summarizes the catalytic activities of Cu nanoparticles prepared by LVCC at 200 
and 1500 Torr (run 1 and run 2). 

 

Maximum Conversion 
(%) 

 

 
Sample 

Cu 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion
Temp. (o C) 

Temp. (o C) Conversion

200 Torr 
 (Run 1) 

156.9 202.8 235.6 100.0 

200 Torr 
(Run 2) 

110.7 166.3 351.5 100.0 

1500 Torr 
(Run 1) 

124.7 199.3 264.7 99.4 

1500 Torr 
 (Run 2) 

96.1 153.1 266.0 99.2 
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Figure 61: Comparison between the catalytic activities of commercial CuO and Cu and 

CuO prepared by LVCC in 1500 Torr after heat treatment in CO/O2 mixture 
(run 2). 
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5.2.2 Low temperature CO oxidation on supported Cu nanoparticle catalyst  

 
 As reported earlier, the catalytic activity of Au nanoparticles, when dispersed on a 

reducible metal oxide support, is greatly increased due to the interaction between Au and 

the support. To examine the effect of the support on the catalytic activity of the Cu 

nanoparticle catalyst, 5 % Cu loading supported on TiO2, ZrO2, and CeO2 was prepared. 

Figure 62 compares the catalytic activities of Cu nanoparticles supported on TiO2, ZrO2, 

and CeO2 as prepared by the LVCC method in 200 Torr Ar (run 1). It clearly indicates that 

5% Cu/CeO2 has the highest activity, followed by 5% Cu/ZrO2, and finally 5% Cu/TiO2. 

However, in run 2 (Figure 63) the catalytic activities of the three catalysts follow the same 

order. The catalytic activities of 5% Cu/CeO2 and 5% Cu/ZrO2 are increased, while in the 

case of 5% Cu/TiO2 it decreased. Table 24 summarizes the catalytic activities of 5 % Cu 

supported on different metal oxide support as prepared by the LVCC method at 200 Torr 

Ar (run 1) and after heat treatment in the CO/O2 mixture (run 2). The enhanced catalytic 

activity of 5% Cu/CeO2 is attributed to the interaction between Cu and CeO2. The 

reducibility and oxygen storage capacity of CeO2 as observed for 5% Au/CeO2 system. 

 Although the catalytic activity of Cu nanoparticles increases as the pressure 

increases from 200 to 1500 Torr, the catalytic activity of 5% Cu/CeO2 does not change 

drastically. However, in run 1 5% Cu/CeO2 prepared in 1500 Torr shows slightly higher 

activity (Figure 64), while in run 2, 5% Cu/CeO2 prepared in 200 Torr has lower light-off 

temperature, and 5% Cu/CeO2 prepared in 1500 Torr has a higher CO conversion 

percentage, as shown in Figure 65. The catalytic activities of 5 % Cu/CeO2 as prepared by 
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the LVCC method in 200 and 1500 Torr Ar before (run 1) and after heat treatment in 

CO/O2 mixture (run 2) are summarized in Table 25. 

 Cu supported on a CeO2 nanoparticle catalyst showed higher activity than Cu 

supported on other metal oxides. The enhanced catalytic activity of this catalyst is 

attributed to the strong interaction between Cu and CeO2, and to the oxygen storage 

capacity and redox properties of CeO2 nanoparticles. To characterize 5 % Cu/CeO2 

catalyst, the X-ray diffraction patterns of 5 % Cu/CeO2 catalyst was measured before and 

after CO oxidation reaction, as shown in Figure 66. Although the X-ray diffraction patterns 

before and after catalysis revealed the characteristic diffraction peaks of crystalline CeO2 

(2θ = 28.6, 33.1, 47.5, 56.3, 59.1, and 69.4o) assigned to the fluorite structure, there is no 

evidence of Cu (Cu (111) at 2θ = 43) or CuO or Cu2O diffraction peaks. This is because 

the Cu nanoparticles in the sample are so small that they can go beyond the detection limit 

of the instrument sensitivity. TEM micrographs of 5 % Cu/CeO2 catalyst show web-like 

aggregates with particle sizes of (2-5 nm) as shown in Figure 67. From the X-ray 

diffraction patterns and the TEM micrographs, it is clear that Cu nanoparticles are small 

and well dispersed (X-ray amorphous) with the CeO2. Since 5 % Cu/CeO2 only contains a 

small amount of Cu, it is hard to observe it in the X-ray diffraction patterns, which is in 

agreement with the results obtained by Liu et al.143. 

 The interaction between Cu and CeO2 has been studied using Hydrogen 

Temperature Programmed Reduction method (H2-TPR), as shown in Figure 68. The TPR 

profile of 5 % Cu/CeO2 catalyst shows a two-step reduction profile observed for all 

Cu/CeO2 and CuO/CeO2 catalysts, indicating the presence of two types of CuO species. 
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Luo et al. 144 suggested that one of the types is small Cu particles that reduced at low 

temperatures, and the other type is large CuO particles that reduced at high temperatures. 

As observed in Au/CeO2, when compared with bulk CeO2, there is a slight shift to a lower 

temperature region (85-190 oC) with Tmax around 165 oC due to the presence of Cu which 

weakened the CeO2 surface oxygen bonding. The temperature at which Cu-CeO2 reaction 

with H2 starts up (Tup) is 85oC. The high temperature CeO2 peak is shifted to lower 

temperature region and starts around 375 oC. From the TPR results, it can be concluded 

that there is a significant Cu-CeO2 interaction in Cu/CeO2 or CuO/CeO2 nanoparticle 

catalysts prepared by the LVCC method, but not as strong as Au-CeO2 catalyst. 

 Figure 69 compares the catalytic activities of 5 % Cu/CeO2 prepared by the LVCC 

method 1500 Torr Ar and after heat treatment in CO/O2 mixture (run 2). The catalytic 

activity of 5 % Cu/CeO2 is increased after the heat treatment in CO/O2 mixture due to the 

oxidization of Cu nanoparticles to CuO, as observed in the X-ray diffraction pattern, and 

the reduction of Cu/CeO2 at lower temperature due to the interaction of Cu with CeO2, as 

observed in TPR profiles. 

 As reported in the previous section, Cu nanoparticles are oxidized after heat 

treatment in CO/O2 mixture (run 2). It is important to compare the catalytic activities of 5 

% Cu/CeO2 to 5 % CuO/CeO2 because the Cu and CuO nanoparticles are so small that 

they can go beyond the detection limit of the instrument sensitivity, and it is hard to 

compare their X-diffraction patterns. Figure 70 shows HRTEM micrographs of both 5 % 

Cu/CeO2 and 5 % CuO/CeO2 prepared by the LVCC method in 1500 Torr Ar. The 

micrographs show that the particle size of 5 % Cu/CeO2 is smaller than the 5 % CuO/CeO2 
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catalyst, and that the 5 % CuO/CeO2 has large agglomerates compared to the 5 % 

CuO/CeO2 catalyst. Although the light-off temperature of 5 % CuO/CeO2 is less than the  

light-off temperature of 5 % Cu/CeO2, the catalytic activity of the 5 % Cu/CeO2 catalyst is 

higher, as shown in Figure 71. The catalytic activities of 5 % Cu and 5 % CuO supported 

on CeO2 as prepared by the LVCC method in 1500 Torr Ar after heat treatment in CO/O2 

mixture (run 2), are summarized in Table 26. 
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Figure 62: Comparison between the catalytic activities of Cu nanoparticles supported on 

TiO2, ZrO2, and CeO2 as prepared by the LVCC method in 200 Torr Ar (run 
1). 
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Figure 63: Comparison between the catalytic activities of Cu nanoparticles supported on 

TiO2, ZrO2, and CeO2 prepared by the LVCC method in 200 Torr Ar (run 2). 
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Table 24 summarizes the catalytic activities of 5 % Cu supported on different metal oxide 
support as prepared by the LVCC method at 200 Torr Ar (run 1) and after heat 
treatment in CO/O2 mixture (run 2). 

 
 

Maximum Conversion 
(%) 

 

 
Sample 

 

 
3% 

Conversion 
Light-off 

Temp.  
(o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion 

Cu / CeO2 (Run 1) 96.7 145.7 250.2 100.0 

Cu / CeO2 (Run 2) 70.0 113.7 264.4 98.3 

Cu / ZrO2 (Run 1) 148.2 242.6 291.6 87.3 

Cu / ZrO2 (Run 2) 120.0 188.7 262.3 100.0 

Cu / TiO2 (Run 1) 261.9 324.7 409.1 83.1 

Cu / TiO2 (Run 2) 239.7 375.7 406.9 63.2 
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Figure 64: Comparison between the catalytic activities of 5 % Cu/CeO2 as prepared (run 1) 

by the LVCC method in 200 and 1500 Torr Ar. 
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Figure 65: Comparison between the catalytic activities of 5 % Cu/CeO2 as prepared by the 

LVCC method in 200 and 1500 Torr Ar after heat treatment in CO/O2 mixture 
(run 2). 
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Table 25 summarizes the catalytic activities of 5 % Cu/CeO2 as prepared (run 1) by the 
LVCC method in 200 and 1500 Torr Ar and after heat treatment  in CO/O2 
mixture  (run 2). 

 
 
 

Maximum Conversion 
(%) 

 

 
Sample 

 
5 % Cu / CeO2 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

200 Torr 
(Run 1) 

96.7 145.7 250.2 100.0 

200 Torr 
(Run 2) 

70.0 113.7 264.4 98.3 

1500 Torr 
(Run 1) 

88.5 136.4 295.0 99.8 

1500 Torr 
(Run 2) 

81.6 117.0 227.8 99.8 
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Figure 66: X-ray diffraction patterns of 5 % Cu/CeO2 before and catalysis. 
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Figure 67: TEM micrographs of 5 % Cu/CeO2 catalyst as prepared by the LVCC method in 

1500 Torr Ar. 
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Figure 68: Temperature Programmed Reduction method (H2-TPR) of 5 % Cu/CeO2 

catalyst prepared by the LVCC method. 
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Figure 69: Comparison between the catalytic activities of 5 % Cu/CeO2 as prepared  by the 

LVCC method in 1500 Torr Ar and after heat treatment in CO/O2 mixture(run 
2). 
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Figure 70: HRTEM of 5% Cu/CeO2 and 5% CuO/CeO2 catalysts as prepared by the LVCC 

method at 1500 Torr Ar. 
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Figure 71: Comparison between the catalytic activities of 5 % Cu/CeO2 and 5 % 

CuO/CeO2 prepared by the LVCC method in 1500 Torr Ar after heat treatment 
in CO/O2 mixture (run 2). 
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Table 26 summarizes the catalytic activities of 5 % Cu/CeO2 and 5 % CuO/CeO2 catalysts 
prepared by the LVCC method in 1500 Torr Ar after heat treatment in CO/O2 
mixture (run 2). 

 

Maximum Conversion 
(%) 

 

 
Sample 

 

 
3% 

Conversion
Light-off 

Temp. (o C) 

50 % 
Conversion
Temp. (o C) 

Temp. (o C) Conversion

5 % Cu/ CeO2  
 

81.6 117.0 227.8 99.8 

5 % CuO/ CeO2 75.6 122.7 279.1 96.4 
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5.2.3 Low temperature CO oxidation on the physical mixtures of Au, Cu 

nanoparticle catalysts  

 Both experiment and theory show that the adsorption and activation of O2 are the 

key steps in this reaction 145-148. For active supports, such as TiO2, the oxygen activation 

occurred on the support surface and the CO oxidation reaction occurred at the interface 

between the support and the gold nanoparticles 75,113. Thus, the need for very small gold 

nanoparticles may arise mainly from larger contact interface. One way to modify the gold-

based catalysts is to mix it with a second metal that can act as promoter for the CO 

oxidation reaction by adsorbing O2 and increasing the catalytic activity.  

The individual Au, Cu, and CuO nanoparticle catalysts, both unsupported and 

supported, on CeO2 show catalytic activities for low temperature CO oxidation as reported 

in the previous chapters. In this section, the catalytic activities of binary mixture of Au 

mixed with Cu, and CuO, both unsupported and supported on CeO2, will be investigated 

where Cu and CuO act as promoters due to their high affinity toward adsorbing O2. 

5.2.3.1 CO oxidation on physical mixtures of Au, Cu, and CuO nanoparticle 

catalysts (unsupported)  

 Since the individual Au and Cu nanoparticle catalysts show high activities towards 

low temperature CO oxidation, it is important to investigate the catalytic activities of their 

mixtures and compare it the catalytic activities of individual components. Figure 72 shows 

the X-ray diffraction patterns of the physical mixture of Au and Cu nanoparticle catalysts 

(10 % Au, 90 % Cu) as prepared by the LVCC method in 1500 Torr Ar and after heat 
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treatment in the CO/O2 mixture. The X-ray diffraction patterns of the fresh sample reveal 

diffraction peaks which are characteristics of a mixture of Cu and Cu2O with no evidence 

of Au diffraction peaks since the amount of Au is small. After the heat treatment however, 

the diffraction patterns are consistent with the diffraction patterns of CuO with no evidence 

of Au diffraction peaks. Figure 73 compares the catalytic activities of the physical mixtures 

of the Au and Cu nanoparticles with Au, Cu, and CuO as prepared by the LVCC method 

(run 1). It is clear that the catalytic activity of the physical mixture is higher than the 

activities of the individual components, and similar to the activity of Cu nanoparticles. The 

same behavior is observed after the heat treatment (run 2), as shown in Figure 74. These 

results suggest that the activity mainly comes from the Cu nanoparticles since the sample 

contains 90 % Cu with a small contribution from Au nanoparticles. The catalytic activities 

of the physical mixture of Au and Cu nanoparticles (10 % Au, 90 % Cu) and the individual 

components before and after heat treatment in the CO/O2 mixture (run 1and 2) are 

summarized in Table 27. The effect of varying percentages of Au and Cu nanoparticles on 

the catalytic activity of the Au and Cu physical mixture was investigated by increasing the 

Au percentage and decreasing the Cu percentage. Figure 75 compares the catalytic 

activities of (10 % Au, 90 % Cu) and (75 % Au, 25 % Cu) physical mixtures after heat 

treatment (run 2). As indicated in the above figure, the catalytic activity of the physical 

mixture decreases as the Au percentage increases and shifts towards the catalytic activity 

of Au nanoparticles, as shown in Table 28. Finally, the catalytic activities of Au and Cu 

and AuCuO (10% Au, 90 % Cu or CuO) physical mixtures after heat treatment (run 2) was 

compared, as shown in Figure 76. It is clear that the physical mixture of Au and CuO is 
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more active than the physical mixture of Au and Cu due to the possible interaction between 

Au and CuO. The catalytic activities of the physical mixture of Au and CuO are 

summarized in Table 29.  

 Based on these results one can conclude that the catalytic activities of the physical 

mixture is slightly higher than the catalytic activities of the individual components due to 

weak interaction between Au and Cu or CuO. 
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Figure 72: X-ray diffraction patterns of the physical mixture of Au and Cu nanoparticle 

catalysts (10 % Au, 90 % Cu) as prepared by the LVCC method in 1500 Torr 
Ar and after catalysis.  
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Figure 73: Comparison between the catalytic activities of the physical mixture of Au and 

Cu nanoparticles (10 % Au, 90 % Cu) and the individual components as 
prepared by the LVCC method (run 1). 
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Figure 74: Comparison between the catalytic activities of the physical mixture of Au and 

Cu nanoparticles (10 % Au, 90 % Cu) and the individual components after 
heat treatment in CO/O2 mixture (run 2). 
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Table 27 summarizes the catalytic activities of the physical mixture of Au and Cu 
nanoparticles (10 % Au, 90 % Cu) and the individual components before and 
after heat treatment in CO/O2 mixture (run 1 and 2). 

 

Maximum Conversion 
(%) 

 

 
Sample 

 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion
Temp. (o C) 

Temp. (o C) Conversion

Au (Run 1) 298.4 - 547.2 25.7 

Au (Run 2) 289.4 - 548.9 29.9 

Cu (Run 1) 124.7 199.3 264.7 99.4 

Cu (Run 2) 96.1 153.1 266.0 99.2 

CuO (Run 1) 164.1 207.2 281.1 93.1 

CuO (Run 2) 103.4 161.5 277.9 92.5 

AuCu Pmix  
(run 1) 

133.0 190.0 257.0 100 

AuCu Pmix  
(run 2) 

96.0 158.0 319.0 100 
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Figure 75: Comparison between the catalytic activities of (10 % Au, 90 % Cu) and (75 % 

Au, 25 % Cu) physical mixtures after heat treatment (run 2). 
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Table 28 summarizes the catalytic activities of (10 % Au, 90 % Cu) and (75 % Au, 25 % 
Cu) physical mixtures after heat treatment (run 2). 

 
 

 
 

Maximum Conversion 
(%) 

 

 
Sample 

 

 
3% 

Conversion
Light-off 

Temp. (o C) 

50 % 
Conversion
Temp. (o C) 

Temp. 
(o C) 

Conversion

10 % Au, 90 % Cu 
 

96.0 158.0 319.0 100 

75 % Au, 25 % Cu 138.3 198.0 330.2 97.6 
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Figure 76: Comparison between catalytic activities of AuCu and AuCuO (10% Au, 90 % 

Cu or CuO) physical mixtures after heat treatment (run 2). 
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Table 29 summarizes the catalytic activities of the physical mixtures of Au, Cu (10 % Au, 

90 % Cu) and Au, CuO (10 % Au, 90 % CuO). 

 

Maximum Conversion 
(%) 

 

 
Sample 

 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion

Temp.  
(o C) Temp. 

(o C) 
Conversion 

10 % Au, 90 % Cu 
 

96.0 158.0 319.0 100 

10 % Au, 90 % CuO 89.2 140.5 211.4 97.8 
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5.2.3.2 CO oxidation on of Au, Cu, and CuO nanoparticles and their physical 

mixtures supported on CeO2 

 As reported in the previous sections, the catalytic activities of the unsupported 

physical mixtures of Au with Cu and CuO are slightly higher than the activities of the 

individual components, and the Au, Cu, and CuO supported on CeO2 show high activities 

for CO oxidation. In this section, the catalytic activities of the physical mixtures of Au 

with Cu and CuO supported on CeO2 will be investigated. Figure 77 shows the X-ray 

diffraction patterns of Au, Cu, and their physical mixtures as prepared by the LVCC 

method in 1500 Torr Ar. The X-ray diffraction patterns reveal diffraction peaks consistent 

with the diffraction patterns of crystalline CeO2 and low intensity diffraction peaks 

consistent with crystalline Au. The diffraction peaks of Cu are not observed in the 

diffraction patterns due to its small size, high dispersion, and the small amount of Cu 

nanoparticles in all the samples, which is below the detection limits of the instrument 

sensitivity. However, the CeO2 diffraction peaks are broader in the samples where Cu 

loading is higher than Au. These results are attributed to the small size of Cu and CeO2.  

As Au loading in the samples increases, the intensities of Au diffraction peaks increases. 

The intensities of Au diffraction peaks in the 5 % (75 % Au, 25 % Cu)/CeO2 is higher than 

the intensities of 5 % pure Au supported on CeO2. Figure 78 shows TEM micrographs of 5 

% Au/CeO2, 5 % Cu/CeO2, and 5 % (10 % Au, 90 % Cu)/CeO2 catalysts as prepared by 

the LVCC method. Both 5 % Cu/CeO2 and 5 % Cu/CeO2 have two types of morphologies. 

5 % Cu/CeO2 has morphology of small elongated particles which form aggregates (web 
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like morphologies) and a small Cu nanoparticle supported on a large spherical particles 

(30-100 nm. However, the particle size of 5 % Cu/CeO2 catalyst is smaller than 5 % 

Au/CeO2, and the number of the spherical particles is less in the 5 % Cu/CeO2. In the 

physical mixture, the morphology is divided into two regions where one region has 

morphology similar to the morphology observed in 5 % Au/CeO2 catalyst and another 

region is similar to the morphology observed for the 5 % Cu/CeO2 catalyst. Also, Au is not 

well-dispersed in the physical mixture of Au, Cu supported on CeO2. These results agreed 

well with the X-ray diffraction patterns observed for these systems, which show that the 

intensities of Au diffraction peaks are higher than pure Au supported on CeO2. 

 Figure 79 compares the catalytic activities of 5 % Au/CeO2, 5 % Cu/CeO2, and 

their physical mixtures as prepared by the LVCC method (run 1).Table 30 summarizes the 

activities of 5 % Au/CeO2 and 5 % Cu/CeO2, and their physical mixtures. It is obvious that 

the 5 % Au/CeO2 has the highest catalytic activity followed by 5 % Cu/CeO2, 5 % (10 % 

Au, 90 % Cu)/CeO2, and finally 5 % (75 % Au, 25 % Cu)/CeO2 catalysts are less than the 

catalytic activities of 5 % Au/CeO2, 5 % Cu/CeO2. However, in run 2 the catalytic 

activities of the physical mixtures are the average of the catalytic activities of 5 % 

Au/CeO2 and 5 % Cu/CeO2, as shown in Figure 80 and summarized in Table 31. Figure 81 

show that 5 % (75 % Au, 25 % Cu)/CeO2 catalyst has higher activity than the 5 % (75 % 

Au, 25 % CuO)/CeO2.Table 32 compares the catalytic activities of 5 % (75 % Au, 25 % 

Cu)/CeO2 and 5 % (75 % Au, 25 % CuO)/CeO2 catalysts after heat treatment (run 2). 

These results can be explained based on the interaction of Au and Cu with the CeO2 

support. Au has a stronger interaction with CeO2 than Cu, as reported in the previous 
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chapters, and this interaction increases after the heat treatment. As a result, when the Au 

loading increases, the activity increases. The activity of 5% Cu/CeO2 is higher than that of 

5% Cu/CeO2. These results can be explained based on the X-ray diffraction of Cu and CuO 

before and after catalysis, where if the X-ray diffraction peaks of Cu as prepared by the 

LVCC method shows pure Cu peaks, and after the reaction, the X-ray diffraction peaks 

show CuO, and in the case of CuO it shows diffraction peaks of Cu2O and CuO before and 

after catalysis. Since Cu2O is less active than CuO the overall activity is less. The same 

results apply when Cu and CuO is supported on CeO2.  
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Figure 77: X-ray diffraction patterns of 5 % (Au, Cu, and AuCu physical mixtures) 

supported on CeO2 and the individual components as prepared by the LVCC 
method. 
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Figure 78: TEM of a). 5 % Au/CeO2., b). 5 % Cu/CeO2, and C). 5 % (75 % Au, 25 

%)/CeO2 catalysts as prepared by the LVCC method. 
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Figure 79: Catalytic activities 5 % Au/CeO2, 5 % Cu/CeO2, and their physical mixtures as 
prepared by the LVCC method (run 1) 
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Table 30 summarizes the activities of 5 % Au/CeO2 and 5 % Cu/CeO2, and their physical 
mixtures as prepared by the LVCC method (run 1). 

 
 
 

Maximum Conversion 
(%) 

 

 
Sample 

5 % (%Au, %Cu)  
/ CeO2 

 
3% 

Conversion
Light-off 

Temp. (o C) 

50 % 
Conversion

Temp.  
(o C) Temp. (o C) Conversion

5 % Au  50.2 118.2 233.2 99.5 

75 % Au, 25%Cu 74.5 158.3 224.3 100.0 

10 % Au, 90%Cu 82.4 144.8 226.4 100.0 

5 % Cu   88.5 136.4 295.0 99.8 
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Figure 80: Catalytic activities of 5 % Au/CeO2, 5 % Cu/CeO2, and their physical mixtures 
as prepared by the LVCC method (run 2). 
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Table 31 summarizes the activities of 5 % Au/CeO2 and 5 % Cu/CeO2, and their physical 
mixtures after heat treatment (run 2). 

 
 
 

Maximum Conversion 
(%) 

 

 
Sample 

5 % (Au, Cu) 
/ CeO2 

 
3% 

Conversion
Light-off 

Temp. (o C) 

50 % 
Conversion

Temp.  
(o C) Temp. (o C) Conversion

5 % Au  27.5 89.95 210.9 99.4 

75 % Au,  25%Cu 41.1 97.8 192.7 99.6 

 10 % Au, 90%Cu 51.2 108.6 217.0 100.0 

5 % Cu   81.6 117.0 227.8 99.8 
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Figure 81: Comparison between the catalytic activities of 5 % (75 % Au, 25 % Cu)/CeO2 

catalyst and 5 % (75 % Au, 25 % CuO)/CeO2 after heat treatment (run 2). 
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Table 32 summarizes the catalytic activities of 5 % (75 % Au, 25 % Cu)/CeO2 catalyst and 
5 % (75 % Au, 25 % CuO)/CeO2 after heat treatment (run 2). 

Maximum Conversion
(%) 

 

 
Sample 

5 % (Au, Cu) 
/ CeO2 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion 

Temp.  
(o C) Temp. 

(o C) 
Conversion

75 % Au, 25%Cu 41.1 97.8 192.7 99.6 

75 % Au, 25%CuO 60.5 119.7 235.3 99.0 
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5.2.4 Low temperature CO oxidation on AuCu Alloy nanoparticle catalyst 

Alternative way to modify the gold-based catalysts is to search for a second metal 

that can form an alloy with gold and that possesses stronger affinity with O2 than gold. 

That is, where two different metal atoms are in intimate proximity to each other, as in an 

alloy, the activated O2 can easily react with the activated CO in a neighboring gold atom to 

give the product CO2.  

 In this section, will be investigated the alloying effect of Au and Cu on the catalytic 

activity. Furthermore, will be investigated the catalytic activity of the resultant alloy when 

it is supported on CeO2. 

5.2.4.1 Low temperature CO oxidation on AuCu Alloy nanoparticle catalyst 

(unsupported) 

 Different percentages of Au and Cu were tried to form an alloy and it was 

discovered that (10 % Au-90 % Cu) is the optimum percentage to form alloys with less Au 

loading. Figure 82 shows X-ray diffraction patterns of Au, Cu, and (10 % Au-90 % Cu) as 

prepared by the LVCC method in 1500 Torr Ar. The X-ray diffraction patterns of (10 % 

Au-90 % Cu) reveal diffraction peaks at 2θ = 36.82, 42.5 (located between the Au (111) 

and Cu (111)), 49.42 (located between the Au (200) and Cu (200)), 62.38, and 72.5(located 

between the Au (220) and Cu (200)). These diffraction peaks are broad peaks, which 

demonstrates the presence of a solid solution of Au and Cu, and is consistent with AuCu 

diffraction peaks.  
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 The morphology of the AuCu alloy consists of (10-15 nm) are connected by wires 

to form a web-like structure which is typical in the LVCC method, as shown in Figure 83.  

 However, the particle size is larger than the particle size of Au and Cu which could 

be related to the preparation conditions of the alloy nanoparticles.  

 The H2 TPR profiles of the AuCu alloy prepared by the LVCC method starts at 

temperatures below 100oC. However, there are two reduction peaks, one at 183oC and 

another at 235oC. These peaks could be attributed to the adsorption of O2 on the alloy, after 

it is exposed to air to form a Au-O-Cu complex. Upon heating in a H2/He mixture, this 

complex is reduced at 183oC to Au0 and Cu2O by breaking the Au-O bond in the Au-O-Cu 

complex followed by the reduction of Cu-O (i.e. CuO) at 235oC to Cu0. The proposed 

reduction mechanism of the AuCu alloy can be explained as follow:  

 

0
2235183 0 0 0

2 2 2 2

o C HCAu O Cu H Cu O Au H O Cu Au H Oδδ δ δ+− − + ⎯⎯⎯→ + + ⎯⎯⎯⎯→ + +  (5.1) 

 
 Figure 85 compares the catalytic activities of the AuCu alloy, Au, Cu, and CuO 

nanoparticles as prepared by the LVCC method (run 1). Although the particle size of the 

AuCu alloy is larger than the particle size of Au and Cu, AuCu alloy nanoparticles show 

higher catalytic activity than the catalytic activities of Au, Cu, and CuO nanoparticles. The 

same behavior is observed in run 2, as shown in Figure 86. The catalytic activities of the 

AuCu alloy, Au, Cu, and CuO nanoparticles (run 1and run 2) are summarized in Table 33. 

 To ensure that the AuCu alloy is reproducible, the catalytic activities of two 

different samples, prepared by the LVCC under the same conditions, were investigated as 
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shown in Figure 87. The catalytic activities of the two samples are similar before (run 1) 

and after heat treatment (run 2). The small variation in the activities is due to the variation 

in the experimental conditions. These results suggest that there is a good reproducibility of 

AuCu alloy nanoparticle catalysts. 

 In order to investigate the affect of heat treatment and aging on the catalytic activity 

of the same AuCu alloy after multiple runs, the X-ray diffraction patterns of AuCu target, 

as prepared by the LVCC method, after run 1, and after run 5 was measured as shown in 

Figure 88. The X-ray diffraction patterns of the alloy target show diffraction peaks of the 

physical mixture of Au and Cu. After the laser evaporation of the AuCu target in Ar 

atmosphere, the diffraction peaks of the resultant particles are consistent with the 

formation of the AuCu alloy. Upon the heat treatment of the AuCu alloy in CO/O2 mixture, 

the AuCu alloy is oxidized where Cu is converted to CuO and Au remains intact. However, 

after run 5 the Cu2O diffraction peaks are observed in the diffraction patterns. Figure 89 

compares the catalytic activities of AuCu alloy after multiple runs and after one day of 

aging. It is clear that the catalytic activity is increased after run 1 and run 3, and decreased 

after one day of aging. These results are consistent with the X-ray diffraction patterns that 

show the formation of CuO and Au after run 1, Au, Cu, and Cu2O after run 5, and the 

overall activity is decreased due the presence of Cu2O, which is less active than Au with 

CuO. Table 34 summarizes the catalytic activities of the same AuCu alloy after multiple 

runs and one day of aging.  

 To investigate the effect of aging on the catalytic activity of AuCu alloy further, we 

measure the catalytic activities of a fresh sample as prepared by LVCC, and after 1 day of 
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aging before and after the heat treatment was measured as shown in Figure 90. The 

catalytic activity of the as prepared sample has higher activity than the aged sample. In run 

1, the significant decrease in the catalytic activity can be attributed to the absorption of O2 

to form a Au-O-Cu complex as indicated in the TPR results and moisture. In run 2, the 

change in the catalytic activities is smaller. This is due to the removal of the moisture and 

the oxidation of Cu to CuO. 

 The catalytic activities of AuCu alloy nanoparticles with AuCu and AuCuO 

physical mixtures, as prepared by the LVCC method (run 1) were compared  as shown in 

Figure 91, and after the heat treatment (Figure 92). The light-off temperatures of the AuCu 

alloy is higher than the AuCu and AuCuO physical mixtures before and after the heat 

treatment while the AuCuO physical mixture reached the 50% conversion at a lower 

temperature than the AuCu alloy and the AuCu physical mixture nanoparticles in run 1 and 

in run 2 however, the AuCu alloy and the AuCuO physical mixture nanoparticles reached 

50 % conversion at the same temperature as the AuCu physical mixture nanoparticles. The 

AuCu physical mixture nanoparticles have a higher conversion percentage at lower 

temperatures than AuCu alloy and AuCuO physical mixture nanoparticles. These results 

can be explained based on the X-ray diffraction patterns of all three samples before and 

after catalysis. In the case of the AuCu alloy, the diffraction peaks show patterns consistent 

with AuCu alloy, which have lower light-off temperature and high conversion. After run 1, 

the diffraction patterns of the AuCu alloy reveal the presence of Au, Cu, Cu2O, and CuO. 

Since the activity of Cu2O has a lower activity than CuO, the light-off temperature is 

shifted to a lower temperature due to the presence of Cu and the maximum conversion is 
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decreased due to the presence of Cu2O. The X-ray diffraction peaks of the AuCuO physical 

mixture nanoparticles after catalysis show diffraction patterns of Au, CuO, and CuO for 

AuCu physical mixture nanoparticles. The catalytic activities of the AuCu alloy, AuCu 

physical mixture, and Au, CuO nanoparticles prepared by the LVCC method after heat 

treatment (run 2) are summarized in Table 35. 

 Based on these results and the results obtained by Wang et al 149 for CO oxidation 

on AuAg system, the reaction mechanism of CO oxidation on AuCu alloy could be 

explained as follows the adsorption and activation of oxygen must take place on Cu, and 

the presence of Au helps the molecular adsorption of oxygen and formation of the O2
− 

species on the Cu surface. Meanwhile, the adsorption of CO occurs on Au. For the reaction 

between O2
− and adsorbed CO to occur, the Au and Cu must be in proximity to each other 

so that the two adsorbed species can interact as reported by Kondarides et al for the AuAg 

alloy 150. The alloy can adsorb CO and O2 on neighboring sites. Electron transfer from Cu 

to the antibonding orbital of an oxygen molecule helps weaken its chemical bond. With a 

neighboring adsorbed CO, the oxygen transfer reaction could then occur easily. The 

proposed scheme is shown in Figure 93. 

5.2.4.2 Low temperature CO oxidation on AuCu alloy nanoparticle catalyst 

supported on CeO2 

 Although, the catalytic activities of the unsupported physical mixtures of Au with 

Cu and CuO are slightly higher than the activities of the individual components, the AuCu 

alloy shows higher activity than the physical, the individual component, and their physical 
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mixture. The Au, Cu, and CuO supported on CeO2 show high activities for CO oxidation. 

In this section, the catalytic activities of the AuCu alloy supported on CeO2 will be 

investigated. 

 Figure 94 compares the catalytic activities of 5 % Au/CeO2, 5 % Cu/CeO2, and 

AuCu alloy/CeO2 nanoparticles as prepared by the LVCC method (run 1). The light-off 

temperature of the AuCu alloy lower than Au supported on CeO2 and higher than Cu or 

CuO supported on CeO2. the AuCu alloy reaches the maximum conversion percentage at 

290oC, which is higher than Au supported on CeO2 and lower than Cu or CuO supported 

on CeO2. The individual components reach a 50 % conversion at lower temperatures than 

the AuCu alloy nanoparticles. Table 36 compares the catalytic activities of 5 % Au/CeO2, 5 

% Cu/CeO2, 5 % CuO/CeO2, and 5 % AuCu alloy/CeO2 nanoparticles. In run 2, the 

catalytic activities of all catalysts is shifted to a lower temperature region due to the 

synergetic interaction between Au, Cu, CuO, and AuCu alloy with CeO2 and the reduction 

of CeO2 where the light-off temperature follows the same order except for the 5 % 

CuO/CeO2 catalyst becomes higher than the 5 % Cu/CeO2. All catalysts reach a full 

conversion at lower temperatures than in run 1. 5 % CuO/CeO2 has less conversion at 

higher temperatures than the other catalysts, as shown in Figure 95. Table 37 summarizes 

the catalytic activities of the AuCu alloy catalyst and the individual components after heat 

treatment (run 2). 

 The catalytic activity of 5 % AuCu alloy/CeO2 nanoparticles is enhanced after the 

heat treatment, as shown in Figure 96. Table 38 summarizes the catalytic activity of 5 % 

AuCu alloy before and after heat treatment (run 1 and run 2). X-ray diffraction patterns of 
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5 % AuCu alloy/CeO2 nanoparticles, as prepared by the LVCC method, show a broad 

diffraction peaks that is consistent with crystalline CeO2 of small size. After catalysis, the 

broadening in the diffraction peaks of CeO2 decreases, which indicates a larger particle 

size, as shown in Figure 97. There is no evidence of AuCu alloy diffraction peaks in the 

diffraction patterns before and after catalysis.  

In order to investigate these results further, 5 % AuCu alloy/CeO2 and 5 % AuCu 

physical mixture/CeO2 nanoparticle catalysts were compared Figure 98 shows the 

morphologies of both catalysts as prepared by the LVCC method. It is clear that in the case 

of the physical mixture, the morphology is a combination of two regions; one region is 

similar to Au/CeO2 with a large particle size and Cu/CeO2 with a small particle size while 

in the case of 5 % AuCu alloy/CeO2, there is only one type of morphology with large 

particle size.  

Although the catalytic activity of the unsupported AuCu alloy nanoparticles is 

higher than the corresponding unsupported physical mixture of Au and Cu, the catalytic 

activity of the physical mixture supported on CeO2 is higher than the catalytic activity of 

the alloy supported on CeO2. These results are attributed the decomposition of AuCu alloy 

after the evaporation in the LVCC process, were the AuCu alloy becomes a mixture of Au 

and Cu supported on CeO2, which has less dispersion than the starting  physical mixture of 

Au and Cu supported on CeO2. Figure 99 shows catalytic activities of 5 % AuCu 

alloy/CeO2 and 5 % AuCu physical mixture/CeO2 nanoparticles as prepared by the LVCC 

method, and Figure 100 shows the catalytic activities of the same catalysts after heat 
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treatment. Table 39 summarizes the catalytic activities of both catalysts before and after 

heat treatment.  

These results can be attributed to the fact that the AuCu alloy adsorbs oxygen when 

it is exposed to air to form Au-O-Cu complex, as reported in the TPR results, when mixed 

with CeO2 to form a target. This alloy does not survive after the laser ablation and it 

decomposes to a mixture of Au with Cu2O and CuO supported on CeO2. and Since Au and 

Cu nanoparticles are close to each other, they are not dispersed well on CeO2 and they 

form large particles. The presence of Cu2O reduces the catalytic activity, as observed 

earlier. After the heat treatment, the catalytic activity is increased due to the oxidation of 

Cu2O to CuO, and there is a synergetic effect of Au and CuO with CeO2 and between Au 

and CuO. In the physical mixture, the Au and Cu mixture was supported on CeO2 where 

the Au and Cu particles are far from each other and well dispersed on CeO2 and both 

catalysts synergetic effect with CeO2. After the heat treatment in CO/O2 mixture, Au 

remains as metallic and Cu is oxidized to CuO. The catalyst then becomes a mixture of Au 

and CuO supported on CeO2, where Au and CuO interact separately with CeO2 and the 

overall catalytic activity is the average of Au/CeO2 and CuO/CeO2. Figure 101 is 

schematic of the proposed scheme of CO oxidation reaction on the AuCu alloy/CeO2 and 

the AuCu physical mixture/CeO2. 
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Figure 82: comparison between the X-ray diffraction patterns of Au, Cu, and (10 % Au-90 

% Cu) as prepared by the LVCC method in 1500 Torr Ar. 
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Figure 83: HRTEM micrographs of AuCu alloy prepared by the LVCC method. 



www.manaraa.com

 200

 

50 100 150 200 250 300 350 400 450 500

CuO
Cu2O

Au-O-Cu

H
yd

ro
ge

n 
co

ns
um

pt
io

n 
(a

rb
. u

ni
ts

)

Temperature (o C)
 

Figure 84: H2-TPR profile of AuCu alloy nanoparticles. 
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Figure 85: Comparison between catalytic activities of AuCu alloy, Au, Cu, and CuO 
nanoparticles as prepared by the LVCC method (run 1). 
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Figure 86: Comparison between catalytic activities of AuCu alloy, Au, Cu, and CuO 
nanoparticles as prepared by the LVCC method (run 2). 



www.manaraa.com

 203

 

Table 33 summarizes the catalytic activities of AuCu alloy nanoparticles (10 % Au, 90 % 
Cu) and the individual components before and after heat treatment in CO/O2 
mixture (run 1and 2). 

 

Maximum Conversion 
(%) 

 

 
Sample 

 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion
Temp. (o C) 

Temp. (o C) Conversion

Au (Run 1) 298.4 - 547.2 25.7 

Au (Run 2) 289.4 - 548.9 29.9 

Cu (Run 1) 124.7 199.3 264.7 99.4 

Cu (Run 2) 96.1 153.1 266.0 99.2 

CuO (Run 1) 164.1 207.2 281.1 93.1 

CuO (Run 2) 103.4 161.5 277.9 92.5 

AuCu Alloy 
(run 1) 

114.5 179.0 268.4 100 

AuCu Alloy  
(run 2) 

44.8 139.3 264.2 100 
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Figure 87: Comparison between the catalytic activities of two AuCu nanoparticles before 
and after heat treatment (run 1 and run 2). 
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Figure 88: Comparison between X-ray diffraction patterns of AuCu target and the same 

AuCu alloy after multiple runs and one day of aging. 
 



www.manaraa.com

 206

50 100 150 200 250 300 350 400
0

20

40

60

80

100

Run 5- after 3 days

Run 4- after 3 days

Run 3-day 1

Run 2-day 1

Run 1-day 1

CO
 c

on
ve

rs
io

n 
( %

 )

Catalyst Temperature ( o C)  
Figure 89: Comparison between the catalytic activities of the same AuCu alloy after 

multiple runs and one day of aging. 
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Table 34 summarizes the catalytic activities of the same AuCu alloy after multiple runs and 
one day of aging. 

 
 

Maximum Conversion 
(%) 

 

 
Sample 

AuCu alloy 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion
Temp. (o C) 

Temp. (o C) Conversion

(Run 1) 114.5 179.0 268.4 100 

(Run 2) 44.8 139.3 264.2 100 

(Run 3) 86.2 144.1 256.5 99.5 

(Run 5) 78.9 151.4 221.5.0 100 
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Figure 90: Comparison between the catalytic activity of AuCu nanoparticles as prepared 

and after one day of aging. 
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Figure 91: Comparison between the catalytic activities of AuCu alloy, AuCu physical 

mixture, and Au, CuO nanoparticles as prepared by the LVCC method (run 1). 
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Figure 92: Comparison between the catalytic activities of AuCu alloy, AuCu physical 

mixture, and Au, CuO nanoparticles prepared by the LVCC method after heat 
treatment (run 2). 
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Table 35 summarizes catalytic activities of the AuCu alloy, the AuCu physical mixture, 
and Au, CuO nanoparticles prepared by the LVCC method after heat treatment 
(run 2). 

 

Maximum Conversion 
(%) 

 

 
Sample 

 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion

Temp.  
(o C) Temp. 

(o C) 
Conversion 

AuCu alloy 44.8 139.3 264.2 100 

10 % Au, 90 % Cu 
 

96.0 158.0 319.0 100 

10 % Au, 90 % CuO 89.2 140.5 211.4 97.8 
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Figure 93: Proposed scheme for CO oxidation reaction on AuCu alloy. 

 
 

 
 



www.manaraa.com

213 

100 200 300
0

20

40

60

80

100

 5 % Au / CeO2
 5 % AuCu Alloy / CeO2
 5 % Cu / CeO2
 5 % CuO / CeO2

CO
 c

on
ve

rs
io

n 
( %

 )

Catalyst Temperature ( o C)  
Figure 94: Comparison between the catalytic activities of the AuCu alloy catalyst and the 

individual components before heat treatment (run 1). 
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Table 36 summarizes the catalytic activities of the AuCu alloy catalyst and the individual 
components before heat treatment (run 1). 

 
 

Maximum Conversion 
(%) 

 

 
Sample 

 

 
3% 

Conversion
Light-off 

Temp. (o C) 

50 % 
Conversion

Temp.  
(o C) Temp. (o C) Conversion

5 % Au/CeO2  50.2 118.2 233.2 99.5 

AuCu Alloy/CeO2  82.4 154.0 290.2 99.1 

5 % Cu/CeO2   88.5 136.4 295.0 99.8 

5 % CuO/CeO2   94.2 148.9 298.6 99.0 
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Figure 95: Comparison between the catalytic activities of the AuCu alloy catalyst and the 

individual components after heat treatment (run 2). 
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Table 37 summarizes the catalytic activities of the AuCu alloy catalyst and the individual 
components after heat treatment (run 2). 

 
 

Maximum Conversion 
(%) 

 

 
Sample 

 

 
3% 

Conversion
Light-off 

Temp. (o C) 

50 % 
Conversion

Temp.  
(o C) Temp. (o C) Conversion

5 % Au/CeO2  27.5 89.95 210.9 99.4 

AuCu Alloy/CeO2  65.6 126.1 243.8 99.7 

5 % Cu/CeO2   81.6 117.0 227.8 99.8 

5 % CuO/CeO2   75.6 122.7 279.1 96.4 
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Figure 96: Comparison between the catalytic activities of the 5 % AuCu alloy before and 

after heat treatment. 
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Table 38 summarizes the catalytic activity of the 5 % AuCu alloy before and after heat 
treatment (run 1 and run 2). 

 
 
 

Maximum Conversion 
(%) 

 

 
Sample 

5 % (Au, Cu mix.) 
/ CeO2 

 
3% 

Conversion
Light-off 

Temp. (o C) 

50 % 
Conversion

Temp.  
(o C) Temp. (o C) Conversion

AuCu Alloy 
 (Run 1) 

82.4 154.0 290.2 99.1 

AuCu Alloy 
(Run 2) 

65.6 126.1 243.8 99.7 
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Figure 97: X-ray diffraction patterns of the 5 % AuCu alloy before and after catalysis 

.
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Figure 98: TEM micrographs of a) 5 % AuCu alloy/CeO2 and b) 5 % AuCu physical 

mixture/CeO2 as prepared by the LVCC method. 
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Figure 99: Comparison between the catalytic activities of 5 % AuCu alloy/CeO2 and 5 % 

AuCu Physical mixture/CeO2 as prepared by the LVCC method (run 1). 
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Figure 100: Comparison between the catalytic activities of 5 % AuCu alloy/CeO2 and 5 % 

AuCu Physical mixture/CeO2 prepared by the LVCC method after heat 
treatment (run 2). 
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Table 39 summarizes the catalytic activities of 5 % AuCu alloy/CeO2 and 5 % AuCu 
Physical mixture/CeO2 prepared by the LVCC method before and after heat 
treatment (run 1 and run 2) 

 

Maximum Conversion 
(%) 

 

 
Sample 

5 % (Au, Cu mix.) 
/ CeO2 

 
3% 

Conversion
Light-off 

Temp. (o C) 

50 % 
Conversion

Temp.  
(o C) Temp. (o C) Conversion

AuCu Alloy 
 (Run 1) 

82.4 154.0 290.2 99.1 

AuCu Alloy 
(Run 2) 

65.6 126.1 243.8 99.7 

Alloy Phys. Mix. 
(Run 1) 

82.4 144.8 226.4 100.0 

Alloy Phys. Mix. 
(Run 2) 

51.9 110.1 215.1 100.0 
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Figure 101: Schematic of proposed reaction mechanism of CO oxidation on (a) AuCu 

alloy/CeO2 (b) AuCu physical mixture /CeO2. 
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6 : Gas phase reactions of Au+ and Cu+ with small molecules 

 
6.1 Introduction 

 The pressure gap between surface science and heterogeneous catalysis is a very 

important issue in catalysis. It is found that surface science experiments on well-defined 

surfaces in ultra-high vacuum (UHV) conditions yield results that are different from results 

obtained in high-pressure catalytic reactors. For example, catalytic CO oxidation on 

ruthenium at a total pressure > 10 torr, the rate of CO oxidation on Ru (001) is higher than 

on any other transition metal surface 151,152. It was found that the oxidation rate is highest 

for a combination of high surface coverage of oxygen and extremely low coverage of CO. 

In contrast, Ru (001) is found to be among the poorest catalysts for CO oxidation under 

UHV conditions153. 

 Gas phase reactions of metal ions with different molecules under typical reaction 

conditions can provide useful information about the intrinsic properties of metal ions and 

there reactivities. Valuable information such as reaction mechanisms, reaction rates, and 

thermochemestry can be obtained using this type of experiment. Understanding the crucial 

steps and characterizations of possible intermediates can improve the design of active 

catalyst systems 154. The advantages of the gas phase reactions in catalysis arise from the 

elucidation of basic properties of isolated molecules and probing reactions under well 

defined conditions since they are not hampered by different disturbing factors in solution 

such as association by ion pairing, solvent–shell interactions, intra–and intermolecular 
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processes that lead to distraction, and / or modification of the catalytically active species 

(e.g. cyclometalation) 155. There are many studies of the gas phase reactions of metal 

cations with molecules such as, H2O, CO, etc 156,157. Al+ reacts with polar molecules such 

as water or ammonia 158 and alcohols such as methanol 159 or isobutylene 160. Reactions of 

metal ions with methane, ethane, and linear Alkenes have been reported.  

 Although Au and Cu belong to the same group, and they have 1S electron outside a 

filled d shell, and they have similar oxidation states, the geometries of their complexes are 

different. This difference in the geometries is not explained well. One explanation is the 

difference in size where Cu+ is smaller than Au+ as a sequence; Cu having a higher 

coordination number, as shown in table 40 161. 

 The gas phase reactions of Au+ with small molecules, such as C2H4 and Propene, to 

form AuC3H6 and AuH 162, CO to form Au (CO)+163, Au (CO)2
+ 163-165, and Au (CO)3

+166, 

have been investigated. However, some of these species are stable at room temperature 163-

165. Ozin et al studied gas phase interactions of gold neutral atoms with a CO/O2 mixture 

using a matrix isolation experiment. He reported the formation of a Au (CO)2(O2) stable 

complex and at very low temperatures (40 K), this complex is converted to CO2 as shown 

in Figure 102 55. Hagen et al reported the formation of anionic complexes, such as 

Au2(CO)O2
-, Au3(CO)O2 

-, and Au3(CO)(O2)2
–, as intermediate in the catalytic CO 

oxidation over negatively charged Au clusters167. 

 Gas phase reactions of Cu+ with various molecules have been studied by many 

researchers168-175. Gas phase reactions of Cu+ with methanol and ethanethiol clusters using 
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the laser ablation mol. beam (LAMB) technique is reported by Nui and Wang 170,171. They 

reported the formation of Cu+(C2H5OH)n and protonated ethanol H+(C2H5OH)n and 

Cu+(CH3CH2SH)n clusters. Jarvis et al studied the gas phase reaction of Cu+ and Cu+ 

(pyrrole) 2 with CO and O2 using inductively coupled plasma/selected-ion flow tube (ICP-

SIFT) tandem mass spectrometer 168,172. He reported that Cu+ interacts with O2 and CO to 

form Cu+ (O2)2 and Cu+ (CO)2 and the presence of one pyrrole molecule dramatically 

increases the reaction rate except in the case of Cu+ reaction with O2. 

 Gas phase cationic polymerization is very important since the fundamental 

mechanism of this reaction can be probed. Metal cations act as initiator catalysts for 

cationic polymerization176-183. Catalytic polymerization in gas phase has been 

investigated. Fe+ was found to be catalytically active for a Diels-Alder reaction of dienes 

with alkenes and alkynes 184,185. Also Fe+ can activate the C-H and C-C bonds 186. 

 As reported earlier, the XPS data of Au/CeO2 of prepared by chemical and 

physical methods shows that the active species for CO oxidation are Au0 and Au+1. 

However, Au/CeO2
, prepared by a chemical method shows higher catalytic activity for CO 

oxidation compared to Au/CeO2 prepared by a physical method. The enhanced catalytic 

activity in the chemical method are attributed to the fact that it contains more of the Au+1 

species, as shown in XPS data.  

 To understand the reaction mechanism of CO oxidation on Au and Cu based 

catalysts, it is important to study the gas phase reaction Au+1 and Cu+1 with CO, O2, and 

their mixture. Furthermore, moisture and impurities such as hydrocarbons present on the 
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surface of a nanoparticle catalyst reduces the catalytic activity. Also, the catalytic activity 

of the Au/CeO2 catalyst decreases significantly in the presence volatile organic compounds 

(VOC), such as butadiene and isoprene.  

 Gas phase polymerization is important not only for probing the mechanism of the 

catalytic process and the exact nature of the catalyst-cocatalyst interaction, but also for the 

elimination of various harmful organic vapors such as butadiene and isoprene by 

converting them into non volatile polymers 181,187,188. Gas phase reactions of Au+ and Cu+ 

with butadiene and isoprene can provide valuable information on the reaction mechanism 

of the catalyst with these compounds and the possibility of cationic polymerization of 

VOC in the gas phase. 

 In this Chapter, Laser Vaporization ionization High Pressure Mass Spectrometry 

(LVI-HPMS), described in Figure 103, is used to study the interactions between singely 

charged metal ions and small molecules such as CO, O2, CO/O2 mixture, H2O, Butadiene, 

and isoprene. 



www.manaraa.com

 229

O C Au
C

O

O
O C Au + CO2

O

30 K

40 K

Au   +   CO2

( I ) ( II )

OO C Au
C

O

O
O C Au + CO2

O

30 K

40 K

Au   +   CO2

( I ) ( II )

O

 

Figure 102: Proposed mechanism of CO oxidation reaction on gold neutral atoms using 
matrix isolation experiments as reported by Ozin et a l 55. 
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6.2 Experimental 

The gas phase reactions of metal ions with several molecules have been studied 

using the Laser Vaporization Ionization High-Pressure Mass Spectrometry (LVI-HPMS) 

177,182,183. Metal cations are generated by focusing the output of the second harmonic of Nd: 

YAG laser (532 nm, energy of 22 mw pulsed at 10 Hz, laser spot 0.5 - 1 mm diameter and 

laser irradiance of ~ 7 × 107 W cm-2) on a metal rod placed in a high pressure cell. The 

high-pressure cell is a 2.5 cm × 2.5 cm aluminum cube mounted inside a high vacuum 

chamber as shown in Figure 103. The HPMS cell has two S1-UV windows where the laser 

beam enters and exits. The gas is introduced to the cell via a needle valve, and is flowed 

behind the entrance window of the cell to prevent any metal particle deposition over the 

window during the laser vaporization of the metal. When the laser beam strikes the metal 

rod, it vaporizes the metal and forms a plasma consisting of neutral metal atoms, metal 

ions, and electrons. The metal ions react with the neutral molecules forming excited 

complexes of metal ion-neutral molecules. The excited complexes can get rid of their 

excess energy by colliding with the carrier gas (He) or by undergoing fragmentation 

(breaking bonds). The products can be addition products or they can be new products 

resulting from the chemical reaction182,189. The reaction products exit the cell through a 

pinhole, are focused by electrostatic lenses, analyzed by the quadrupole mass filter (Extrel 

C-50), and detected by the electron multiplier. The quadrupole mass spectrometer is 

manually controlled using an Extrel C-50 Controller with a mass range of 10-550 mass 

unites (amu). The resolution of the quadrupole is better than 1 amu. The ion current from 
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the electron multiplier is amplified and recorded. To collect the mass spectrum, the ion 

arrival time signal is gated using a boxcar integrator, averaged 5 times, and then recorded. 

To collect the arrival time of different species, the signal is recorded and averaged 200 

times using a LeCroy 9450 oscilloscope. 

Under typical experimental conditions the metal ions undergo several thousand 

collisions with the monomer molecules in the gas phase, thus resulting in ion-molecule 

reactions with product ions that could initiate further reactions leading to polymerization. 

the early stages of cationic polymerization of isoprene and butadiene using the metal 

cations Au+ and Cu+ act as initiators will be presented. 
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Figure 103: Schematic diagram of Laser Vaporization Ionization High Pressure Mass 

Spectrometry (LVI-HPMS) and relevant components. 
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6.3  Experimental Results 

6.3.1 Gas phase reactions of Au+ with small molecules 

To understand the reaction mechanism of CO oxidation on gold, gas phase reaction 

of Au+ with CO, O2, (3.4 % CO, 20 % O2/ He) mixture and CO oxidation in the presence 

of other compounds such as butadiene and isoprene. Au+ interaction with these molecules 

has been studied as a function of pressure at room temperature using laser vaporization 

high pressure mass spectrometry. Au has one isotope at 197 amu. The gas phase reaction 

of Au with small molecules results in the addition of these molecules to Au+.  

6.3.1.1 Gas phase reactions of Au+ with CO, O2, and their mixtures 

 Collisional stabilization is a very important process in metal ion-molecule reactions. 

When the ion and molecules collide in the gas phase and attempt to combine chemically, 

the species formed in the excited state have excess vibrational energy. These species must 

loose this energy to stabilize. If no stabilization occurs, these species disassociate to the 

reactants. Low pressure stabilization is accomplished by collisions with another species, 

such as gases inside the cell or via a radiation process. However, at pressure collisional 

stabilization is dominant.  

Gas phase reaction of Au+ with pure CO 

 CO reaction of Au+ ions results on the formation of Au+ (CO), Au+ (CO) 2, and 

Au+ (CO) (O2) at low pressure. At high pressure, there is an addition of H2O to Au+ (CO) 
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(O2) and Au+ (CO) 2. The addition of H2O and O2 is due to the presence of impurities in the 

CO tank as shown in Figure 104. 

 The proposed reaction scheme for Au+ with CO is summarized as follow: 

At low pressures of pure CO, the reaction of the Au+ with CO is dominated by adduct 

formation where Au+ reacts with pure CO to form [Au+ (CO)]* excited complex which is 

stabilized by collision with CO to form Au+ (CO) as shown in equation (6.1). 

If no stabilization occurs, Au+ (CO) either vanishes or can be stabilized by further collision 

with CO to form Au+ (CO)2, as shown in equation (6.2). 

 At high pressure, [Au+ (CO)]* will be stabilized by either the reaction with CO to 

form Au+ (CO)2 or by the reaction with impurities such as O2 to form Au+ (CO)(O2), as 

shown in equation (6.3), which react with H2O to form Au+ (CO)(O2)(H2O), as shown in 

equation (6.4). Also Au+ (CO)2 further react with H2O to form Au+ (CO)(O2)(H2O) and 

Au+ (CO)2(H2O) as shown in (6.5). 

 

 

 *[ ( )] ( )Au CO Au CO Au CO+ + ++ ⎯⎯→  (6.1) 

 2( ) ( )Au CO CO Au CO+ ++  (6.2) 

 2 2( ) ( )( )Au CO O Au CO O+ ++  (6.3) 

 2 2 2 2( )( ) ( )( )( )Au CO O H O Au CO O H O+ ++  (6.4) 

 2 2 2 2( ) ( ) ( )Au CO H O Au CO H O+ ++  (6.5) 
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Gas phase reaction of Au+ with pure O2 

 The reaction of Au+ with O2 at low pressure results in the formation of a Au+ (O2) 

complex. As the pressure increases, Au+ (O2) disappears and H2O is adding to the Au+ to 

form Au+ (H2O)n , n = 1-5 cluster, as shown in Figure 105. 

 The reaction scheme can be summarized for Au+ with O2 as follow: At low 

pressures of pure O2, Au+ reacts with O2 to form [Au+ (O2)]* and excited complexes which 

are stabilized by collision with O2, as shown in equation (6.6). H2O impurities also react 

with Au+ to form Au+ (H2O). 

 At high pressure, Au+ (O2) vanishes and Au+ (H2O) reacts with H2O to form Au+ 

(H2O)n , n = 1-5 cluster, as shown in equation (6.7). 

 

 *
2 2 2[ ] ( )Au O Au O Au O+ + ++ + ⎯⎯→  (6.6) 

 2 2( ) , 1 5nAu nH O Au H O n+ ++ = −  (6.7) 

 

Gas phase reaction of Au+ with 3.4 % CO, 20 % O2 / He mixture 

 Mass spectrum of gas phase reaction of Au+ with 3.4 % CO, 20 % O2/ He mixture, 

shows the formation of Au+ (CO), Au+ (CO)2, Au+ (CO)(H2O), Au+ (CO) (H2O)2 and Au+ 

(CO)(H2O)3. However, the Au+ (CO)2(O2) complex is not observed as shown in Figure 

106. Time profiles for ions obtained from the Au+ reaction with CO/O2 mixture in He at 

298 K are shown in Figure 107. Time profiles of the products ions show that Au+ is formed 

and decay followed by the formation of Au+ (CO) and the addition of another CO molecule 
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to form Au+ (CO)2. At high pressures, H2O is added to the Au+ (CO) complex. However, 

Au+ (CO)2 remains, which suggest a high stability of this complex 

 Based on the mass spectra and the time profiles of reactions of Au+ with 3.4 % 

CO, 20 % O2/ He mixture at different pressures at 298 K, the reaction scheme of Au+ with 

CO/O2 in He mixture can be explained as follows: 

 At low pressures of CO/O2 in He mixture, the reaction of the Au+ with CO/O2 is 

dominated by adduct formation where Au+ reacts with CO/O2 to form [Au+ (CO/O2)]* 

excited complex which is stabilized by collision with CO, O2, and He dissociates to form 

Au+ (CO), as shown in equation (6.8). At high pressure, Au+ (CO) is stabilized by 

collisions with CO/O2 mixture to form a stable Au+ (CO)2 product according to the 

equation (6.9) or it reacts with H2O to form Au+ (CO)(H2O)n where n=1-3 as shown in 

equation (6.10). 

 *
2 2( / ) [ ( / )] ( )Au CO O Mixture Au CO O Au CO+ + ++ ⎯⎯→  (6.8) 

 2( ) ( )Au CO CO Au CO+ ++  (6.9) 

 2 2( ) ( )( ) , (1 3)Au CO H O Au CO H O n n+ ++ = −  (6.10) 

 
 To investigate the formation of CO2, electron impact of CO/O2 mixture after the 

reaction of Au+ with CO/O2 and the electron impact and laser vaporization of Au+ is 

performed at the same time. Figure 108 compares the mass spectra of CO/O2 using 

electron impact, laser ionization, and both electron impact and laser ionization at the same 

time. As indicated from the mass spectra, there is no evidence of CO2 formation. These 
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results can be explained based on the Ozin et al 55 results of CO oxidation on Au neutral 

atoms. According to Ozin et al, the precursor of CO oxidation reaction is the addition of 

two molecules of CO and one molecule of O2 to form Au+ (CO)2( O2) complex which 

results in the conversion of CO to CO2 at low temperatures (30-40 K). The presence of 

small traces of H2O added to the Au+ (CO)2 and the replacing of the oxygen and prevention 

of the formation of Au+ (CO)2(O2) and CO oxidation reaction. In order for the reaction to 

proceed, it must occur at temperatures less than 100 K, where H2O is frozen.  

 

Gas phase reaction of Au+ with Pure H2O 

 The presence of a small amount of H2O impurities prevents CO oxidation reaction 

where H2O replaces O2 and prevents CO oxidation reaction. Since the ionization potential 

of H2O is much higher than the ionization potential of Au, there is no possibility of charge 

transfer from the gold to H2O and the charge remains on the gold.  

 To investigate the water effect further, the reaction of Au+ with pure H2O is 

studied. Figure 109 shows the mass spectrum of Au+ produced in pure H2O at different 

pressures and at room temperature, Figure 110 shows the addition of seven H2O to Au at 

room temperature which indicates that there is a strong bond. Time profiles for ions 

obtained from the Au+ reaction with pure H2O at 298 K are consistent with the mass 

spectrum as shown in Figure 111. The time profiles suggest that this system reached an 

equilibrium state. This can be seen from the flat curve of the product ions after a certain 

arrival time. 
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 The proposed reaction scheme of Au+ with H2O molecules can be explained by the 

sequential addition of H2O to Au+. Au+ reacts with H2O to form [Au+(H2O)]*. At a low 

pressure, [Au+(H2O)]* is stabilized by the collisions with H2O molecules to produce 

Au+(H2O) as shown in equation (6.11). At high pressure, Au+(H2O) reacts with H2O 

molecules to form higher Au+(H2O)n clusters as shown in equation (6.12) 

 *
2 2 2[ ( )] ( )Au H O Au H O Au H O+ + ++ ⎯⎯→  (6.11) 

 2 2 2( ) ( ) , (1 5)nAu H O nH O Au H O n+ ++ = −  (6.12) 
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Figure 104: Mass spectrum of Gold (Au+) ions produced in Pure CO at different pressures. 
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Figure 105: Mass spectrum of Gold (Au+) ions produced in Pure O2 at different pressure 
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Figure 106: Mass spectrum of Gold (Au+) ions produced in CO/O2 mixture in He at 
different pressures. 
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Figure 107: Normalized time profiles of major ions produced following the interaction of 
Au+ ions with CO/O2 mixture in He at 2001 mtorr and 298 K. 
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Figure 108: Electron impact ionization, Laser Ionization, and Electron impact with Laser 
Ionization of CO/O2 mixture with 200 mTorr at 298 K. 
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Figure 109: Mass spectrum of Gold (Au+) ions produced in Pure H2O at different pressure 
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Figure 110: Mass spectrum of Gold (Au+) ions produced in Pure H2O at 150 mTorr and 
298 K. 
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Figure 111: Normalized time profiles of major ions produced following the interaction of 
Au+ ions with pure H2O at 150 mTorr and 298 K. 
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6.3.1.2 Gas phase reactions of Au+ with butadiene and isoprene 

Gas phase reactions of Au+ with butadiene 

 The gas phase reaction of Au+ with butadiene results in the addition of butadiene 

molecules to the gold ion. As the pressure increases, these species start to disappear and a 

hydrocarbon chain are formed where the length of this chain increases as the pressure 

increases, as shown in Figure 112. To investigate these results further, the reaction of Au+ 

with different concentration (1, 5, and 10 %) of butadiene at 50 mTorr cell pressure was 

studied. Figure 113 shows mass scans as a function of butadiene concentrations. As the 

concentration increases, the hydrocarbons chain increases. Additions of up to C24 were 

observed. The length of hydrocarbons is equivalent to 6 butadiene molecules, which is an 

indication of the early stages of butadiene polymerization. Au+ ions react with butadiene 

and form a complex of Au+ with butadiene which acts as a precursor to form a butadiene 

polymer. Au+ acts as an initiator, or a catalyst, for gas phase polymerization of butadiene. 

 The proposed scheme for this reaction can be summarized by the following 

reactions: At a low pressure and concentration of butadiene, the reaction of the Au+ with 

butadiene is dominated by adduct formation. Since adduct will be stabilized by releasing 

excess energy through collision with buffer gas.  

 There are different channels for this reaction to occur. The first channel involves 

the addition of C4H6 to Au+ where [Au+(C4H6)]* dissociates to Au+(C4H6) which reacts 

with C4H6 to form Au+(C4H6)2, as shown in equations (6.13) and (6.14). 
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 At a high pressure and higher concentration of butadiene, the excited complex, 

[Au+(C4H6)]*, dissociates instead of being stabilized to adduct Au+(C4H6). 

 *
4 6 4 6 4 6[ ( )] ( )Au C H Au C H Au C H+ + ++ ⎯⎯→  (6.13) 

 4 6 4 6 4 6 2( ) ( )Au C H C H Au C H+ ++  (6.14) 

 

 The dissociation gives the hydrocarbon fragments that can be seen at higher 

pressures and concentrations of butadiene. The formation of these fragments can also be 

coming from the reaction of fast electrons (from plasma) with butadiene molecules which 

result in the ionization of butadiene to produce C4H6
+ ion.  

 Since the ionization potential of butadiene (9.07 eV) is less than the ionization 

potential of Au (9.22 eV), there is a possibility for direct charge transfer from Au to the 

butadiene molecules to produce C4H6
+. The presence of fast electrons associated with 

plasma ionizes isoprene molecules to produce C4H6
+. The reaction of the C4H6

+ ion with 

butadiene molecules to produce [C4H6
+(C4H6)]* excited complex as shown in equation 

(6.15). [C4H6
+(C4H6)]* dissociates instead of being stabilized to adduct C4H6

+(C4H6). This 

dissociation gives the hydrocarbon fragments that can be seen in the electron impact of 

C4H6. These hydrocarbon fragments react with C4H6 molecules to produce higher 

hydrocarbon fragments via addition and elimination of H, CH3, C3H3, and C4H5, as shown 

in equations (6.16) and (6.17).  
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 *
4 6 4 6 4 6 4 6[ ( )]C H C H C H C H+ ++  (6.15) 

 

3 3 3

4 5*
4 6 4 6

5 7 3 3

4 7 4 5

 

[ ( )]

C H CH

C H H
C H C H

C H C H

C H C H

+

+
+

+

+

⎧⎯⎯→ +
⎪

⎯⎯→ +⎪
⎨
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⎪⎯⎯→ +⎩

 (6.16) 

4 6 4 6 4 6 4 6

4 6

4 6 4 6 4 6 4 6

4 6 4 6 4 6

4 6 8 12 12 18 16 24 20 30

4 7 8 13

5 7 9 13 13 18 17 24 21 30

4 5 6 9 2 2 10 14 14

C H C H C H C H

C H

C H C H C H C H

C H C H C H

C H C H C H C H C H

C H C H

C H C H C H H C H C H

C H C H C H C H H C

+ + + + +

+ +

+ + + + +

+ + +

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→ + ⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→ + ⎯⎯⎯→ + ⎯⎯⎯→ 4 6

4 6 4 6 4 6

20 18 26

3 3 7 9 11 15 11 13 2

C H

C H C H C H

H C H

C H C H C H C H H

+ +

+ + + +

⎯⎯⎯→

⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ +

(6.17) 

 

Gas phase reactions of Au+ with isoprene 

 The gas phase interaction of Au+ with isoprene shows a different behavior than 

Au+ with butadiene, as shown in Figure 114. The interaction Au+ with isoprene results in 

the addition of isoprene molecules to the gold ion and the formation of Au+ isoprene 

complexes and two isoprene units simultaneously. However, at high pressure, the Au+ 

(C5H8) complex disappears while Au+ (C5H8)2 remains and a hydrocarbon chain is formed, 

where the length of this chain increases as the pressure increases. At 500 mTorr, addition 

up to C15 was observed. This length of hydrocarbons is the equivalent of 3 isoprene 

molecules, which is an indication of the early stages of isoprene polymerization.  

 The proposed reaction mechanism can be explained as follows: At a low pressure 

of the isoprene/He mixture, the reaction of the Au+ with butadiene is dominated by adduct 
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formation. These adducts will be stabilized by releasing excess energy through collisions 

with He.  

 There are different channels for Au+ with C5H8 reaction to occur. The first channel 

involves the addition of C5H8 to Au+ where [Au+(C5H8)]* dissociates to Au+( C5H8) as 

shown in equation (6.18). However, at high pressures of isoprene, the excited complex, 

[Au+(C5H8)]*, dissociates instead of being stabilized to adduct Au+(C5H8) which reacts 

with C5H8 to form which reacts with C5H8 to form Au+( C5H8)n, n=1-2 clusters as shown 

equation (6.19). 

 *
5 8 5 8 5 8[ ( )] ( )Au C H Au C H Au C H+ + ++ ⎯⎯→  (6.18) 

 5 6 5 8 5 8 2( ) ( )Au C H C H Au C H+ ++  (6.19) 

 Since the ionization potential of isoprene (8.86 eV) is less than the ionization 

potential of Au (9.22 eV), there is a possibility of direct charge transfer from Au to the 

isoprene which results in the formation of C5H8
+. The C5H8

+is also can be formed as a 

result of the presence of fast electrons associated with plasma ionizes isoprene molecules 

to produce C5H8
+ which reacts with isoprene molecules to produce [C5H8

+( C5H8)]* excited 

complex as indicated in equation (6.20). 

 This excited complex disassociates at high pressures to produce hydrocarbons 

fragments which are similar to fragments of isoprene ion-molecule products that are 

observed in electron impact ionization, as shown in equation (6.21). Several channels for 

this reaction can be distinguished. The first channel involves the reaction of the C5H8
+ and 

C10H16
+ with isoprene neutral molecules and the elimination of H as shown in equation 
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(6.22). Second channel is the condensation channel, where isoprene molecules are added to 

the hydrocarbon fragments to produce higher fragments as shown in equation (6.23). 

 *
5 8 5 8 5 8 5 8[ ( )]C H C H C H C H+ ++  (6.20) 

 

5 8 5 8

5 8 5 8
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 (6.23) 

 

 When comparing the gas phase interaction of Au+ with butadiene and isoprene, it 

is clear that butadiene polymerization starts with small hydrocarbon chains and the length 

of the chain increases, as the pressure increases while in the case of isoprene the 

polymerization starts with one unit of isoprene and at high pressures fragments of 

hydrocarbons starts to appear. Au+ and butadiene complexes disappears totally at high 

pressures, which results in an increase in the hydrocarbon chain length to form up to 6 

butadiene units while in the case of isoprene, Au+ and isoprene complexes remain and the 

hydrocarbon chain length increases to form up to 3 isoprene units. These results suggest 
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that the butadiene polymerization is faster than the isoprene polymerization due to a larger 

number of C-H bonds in the isoprene molecules.  
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Figure 112: Mass spectrum of Gold (Au+) ions produced in 1% butadiene in He at different 
pressures and at 298 K. 
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Figure 113: Mass spectrum of Gold (Au+) ions produced in 1, 5, 10 % butadiene in He at 
150 mTorr and 298 K. 
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Figure 114: Mass spectrum of Gold (Au+) ions produced in 5% butadiene in He at different 
pressures and at 298 K. 
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6.3.2 Gas phase reactions of Cu+ with small molecules 

Unlike Au, Cu has two isotopes. One isotope has a mass of 63 amu with high 

abundance and the second isotope has a mass of 65 amu. In the gas phase reaction of Cu+ 

with small molecules, these molecules addition to both isotopes is expected.  

6.3.2.1 Gas phase reactions of Cu+ with CO, O2, and their mixtures 

Gas phase reactions of Cu+ with CO 

 Gas phase reactions of Cu+ with CO at low pressures and 298 K result in the 

addition of CO molecules to the copper ions, and the formation of Cu+ (CO), and the 

addition of O2 to form Cu+ (O2) and Cu+ (O2)2 complexes. At moderate pressures, CO 

starts adding to form Cu+ (CO) and Cu+ (CO)2 complexes. On the other hand, H2O starts 

adding to Cu+ (CO) and Cu+ (CO)2 to form Cu+ (CO)( H2O), Cu+ (CO)2( H2O), and Cu+ 

(CO)2( H2O)2 complexes. However, at high pressures, these complexes disappear and only 

Cu+ (CO)n with n = 1-4 are observed as shown in Figure 115. The addition of H2O and O2 

at low pressures is due to the presence of impurities in the CO tank as mentioned earlier. 

 The proposed reaction scheme for Cu+ with CO is summarized as follow: 

At low pressure of pure CO, the reaction of the Cu+ with CO is dominated by adduct 

formation, where Cu+ reacts with pure CO to form [Cu+ (CO)]* excited complex, which is 

stabilized by collisions with CO to form Cu+ (CO), as shown in equation (6.24). 

If no stabilization occurs, Cu+ (CO) either vanishes or stabilizes by further collisions with 

CO. 
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 At high pressure, [Au+ (CO)]* stabilizes by the reaction with CO to form Cu+ 

(CO)n, n=1-4 as shown in equation (6.25). 

 *[ ( )] ( )Cu CO Cu CO Cu CO+ + ++ ⎯⎯→  (6.24) 

 2 3 4( ) ( ) ( ) ( )CO COCu CO CO Cu CO Cu CO Cu CO+ + + ++  (6.25) 

 

Gas phase reactions of Cu+ with O2 

 O2 reaction of Cu+ ions results on the formation of Cu+ (O2) 2, Cu+ (N2), and Cu+ 

(H2O) at low pressures. As the pressure increases, Cu+ (O2) disappears and Cu+ (O) is 

formed. Also, H2O and N2 is added to Cu+ (H2O) and Cu+ (N2) to form Cu+ (H2O)2, and 

Cu+ (N2)2, as shown in Figure 116. 

The reaction scheme of Cu+ with pure O2 is different than that of Au+ with O2, 

where in the case of Au+; H2O replaces O2 at high pressure. Cu+ reacts with O2 to form the 

excited complex [Cu+(O2)]* which dissociate to form Cu+ (O2) as shown in equation (6.26). 

Cu+ (O2) stabilizes by further collision with O2, were Cu+ (O2) dissociates to form Cu+(O) 

and O, as shown in equation (6.27). 

 *
2 2 2[ ( )] ( )Cu O Cu O Cu O+ + ++ ⎯⎯→  (6.26) 

 2 2( ) ( )Cu O O Cu O O+ ++ +  (6.27) 

 

Gas phase reactions of Cu+ with CO/O2 

 After the gas phase reaction of Cu+ with the individual components (i.e. CO and 

O2) were studied, the reaction of Cu+ with CO/O2 mixture in He at 298 K could be studied. 
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Figure 117 shows the reaction products after Cu+ interacts with the CO/O2 mixture in He. 

At a low pressures, both atomic oxygen and molecular oxygen are added to Cu+ to form 

Cu+ (O) and Cu+ (O)2. Also, CO is added to Cu+ (O)2 to form Cu+ (O)2(CO). As the 

pressure increases, Cu+ (O), Cu+ (O)2, Cu+ (O)2(CO), and CO is added to Cu+ to form Cu+ 

(CO), Cu+ (CO)2, and Cu+ (CO)3. Furthermore, H2O is added to Cu+ to form Cu+ (H2O) 

and to Cu+ (CO), Cu+ (CO)2, and Cu+ (CO)3 to form Cu+ (CO) (H2O)2, Cu+ (CO) (H2O)3, 

Cu+ (CO)2 (H2O), Cu+ (CO)2 (H2O)2, and Cu+ (CO)3 (H2O). At high pressure, Cu+ (CO) 

(H2O)2, Cu+ (CO) (H2O)3 are observed with high intensities.  

The proposed reaction scheme of Cu+ with CO/O2 mixture in He at 298 K is can be 

explained based on the mass spectrum as follows: At low pressures, Cu+ reacts with CO/O2 

mixture to form [Cu+(CO/O2)]*, which is stabilized by the collisions with CO/O2 mixture 

and He. As result, [Cu+(CO/O2)]* dissociates to form Cu+(O), Cu+(O2), and Cu+(CO), as 

shown in equation (6.28).  

At high pressures, these products react with CO/O2 mixture which result in the 

formation of Cu+(CO)3 (6.30)  and impurities that present in the cell to form products as 

shown in equations(6.30-6.33) . 
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*

2 2

2

( )
/ [ ( / )] ( )

( )

Cu CO
Cu CO O Cu CO O Cu O

Cu O

+

+ + +

+

⎧⎯⎯→
⎪

+ ⎯⎯→⎨
⎪⎯⎯→⎩

 (6.28) 

 2 3( ) ( ) ( )COCu CO CO Cu CO Cu CO+ + ++  (6.29) 

 2 2( ) ( )( )Cu CO O Cu CO O+ ++  (6.30) 

 2
2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( )H OCu CO H O Cu CO H O Cu CO H O+ + ++  (6.31) 

 2 2 3 2( ) ( ) ( ) ( )Cu CO H O CO Cu CO H O+ ++  (6.32) 

 
2

2

2 2 2 2

2 3

( ) ( )( ) ( )( )

( )( )

H O

H O

Cu CO H O Cu CO H O Cu CO H O

Cu CO H O

+ + +

+

+
 (6.33) 

6.3.2.2 Gas phase reactions of Cu+ with butadiene and isoprene 

Gas phase reactions of Cu+ with butadiene 

As mentioned in the previous sections, the gas phase reaction of Au+ with 

butadiene and isoprene result in the addition of butadiene and isoprene molecules to the 

Au+. As the pressure increases, these species start to disappear and a hydrocarbon chain are 

formed where the length of this chain increases. These results indicate that Au+ acts like an 

initiator for the early stages of polymerization of these molecules. 

 The same behavior is observed for the gas phase reactions of Cu+ with butadiene 

and isoprene. Figure 118 shows the mass spectra of the gas phase reaction of Cu+ with 1 % 

butadiene at 298 K as a function of pressures. At low pressure, Cu+ reacts with butadiene 

to form Cu+ (C4H6), Cu+ (C4H6)2, and Cu+ (C4H6) (H2O) complex which results from the 
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presence of small impurities of H2O, which is typical in any vacuum system. Also, C2H3
+ 

hydrocarbon is observed. However, at high pressure Cu+ (C4H6)2, and Cu+ (C4H6) (H2O) 

disappear, while Cu+ (C4H6)2 along with a long chain (up to C11) of hydrocarbons are 

observed. 

 The proposed scheme for this reaction can be summarized as follows: At low 

pressures of butadiene, the reaction of the Cu+ with butadiene is dominated by [Cu+ 

(C4H6)]* adduct formation. Since adduct will be stabilized by releasing excess energy 

through collisions with He. There different channels for this reaction to occur. First 

channel involves the addition of C4H6 to Cu+ at low pressures, where [Cu+(C4H6)]* 

dissociates to Cu+ (C4H6), which reacts with C4H6 to form Cu+(C4H6)2, as shown in 

equation (6.34). However, at high pressures and concentrations, the [Cu+(C4H6)]*, 

dissociates instead of being stabilized to adduct Cu+.(C4H6). 

 Since the ionization potential of the butadiene (9.07 eV), which is less than that of 

Cu (7.8 eV), there is no possibility for direct charge transfer from Cu to the butadiene 

molecules to produce C4H6
+. The presence of fast electrons associated with plasma could 

be responsible for ionizing the isoprene molecules to produce the C4H6
+. The C4H6

+ reacts 

with C4H6 molecules to produce [C4H6
+(C4H6)]* excited complex, as shown in equation 

(6.35). This complex dissociates instead of being stabilized to adduct C4H6
+(C4H6).as a 

result,  hydrocarbon fragments are formed as result of the addition of C4H6
+. Addition of 

C4H6 and elimination of H, CH2, C3 H3 and C4H5 can produce higher hydrocarbons 

fragments, as shown in equations (6.35-6.38). 
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 + + * +
4 6 4 6 4 6Cu +C [Cu (C )] Cu (C )H H H⎯⎯→  (6.34) 

 4 6C+ + +
4 6 4 6 8 12 12 18Cu (C ) C Cu (C ) (C )HH H H Cu H+  (6.35) 

 

4 6

4 6

C+ + +
4 6 4 6 8 12 12 18

C+ +
4 6 4 6 5 7 3 5 9 13

+ +
3 3 4 6 7 9 11 15

C C C C

C C C

C C C C

H

H

H H H H

H H H C H C H

H H H H

+

+

+ ⎯⎯→ + ⎯⎯⎯→

+ ⎯⎯→ ⎯⎯→

 (6.36) 

 
4 6 4 6

4 6

C C+ + +
4 6 6 9 10 14

C+ +
6 9 9 15 2

C C C

          or          C C

H H

H

H H H H

H H CH

⎯⎯⎯→ ⎯⎯⎯→ +

⎯⎯⎯→ +
 (6.37) 

 
4 6

4 6

C+ +
4 6 4 5

C+ + +
8 12 8 13 4 5

C C

C C +C

H

H

H H H

H H H

⎯⎯⎯→ +

⎯⎯⎯→
 (6.38) 

 

Gas phase reactions of Cu+ with Isoprene 

The gas phase reaction of Cu+ with isoprene at low pressures result in the addition 

of isoprene and H2O to the Cu+ ions in a similar fashion as the reaction with butadiene. The 

formation of Cu+ (C5H8), Cu+ (C5H8)2, and Cu+ (C5H8) (H2O) at low pressures was 

observed. As the pressure increases, Cu+ (C5H8) and Cu+ (C5H8) (H2O) disappear while 

Cu+ (C5H8)2 remains. Also, a long chain (up to C11) of hydrocarbons is observed, as shown 

in Figure 119.  

The proposed reaction scheme of Cu+ with C5H8 can be summarized as follow: 

At low pressures, Cu+ reacts with C5H8 to form [Cu+ (C5H8)]* excited complex. This exited 

complex stabilizes by collisions with C5H8 and He. If no stabilization occur, [Cu+ (C5H8)]* 

disassociates to Cu+ (C5H8) adduct as explained in equation (6.39). At high pressures, Cu+ 

(C5H8) reacts with C5H8 to form Cu+ (C5H8)2, as shown in equation (6.40).  
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Since ionization potential of butadiene (8.86 eV) is less than the ionization 

potential of Cu (7.8 eV), there is no possibility for direct charge transfer from Cu+ to the 

C5H8 molecules to produce C5H8
+. The presence of fast electrons associated with plasma 

for the C5H8 being ionized. The C4H6
+ reacts with C5H8 to form [C5H8

+(C5H8)]* excited 

complex, as shown in equation (6.41). This complex dissociates at high pressures to 

produce hydrocarbon fragments, which react with C5H8 and by elimination of CH2 and 

CH3 groups to form higher fragments, as expressed in equation (6.42). 

 + + * +
5 8 5 8 5 8Cu +C [Cu (C )] Cu (C )H H H⎯⎯→  (6.39) 

 + +
5 8 5 8 10 16 2Cu (C ) C Cu (C )H H H+  (6.40) 

 + + *
5 8 5 8 5 8 5 8C +(C ) [C (C )]H H H H  (6.41) 

 5 8

5 8

5 8 5 8

+
4 5 3

+
3 3 3

C+ * + +
5 8 5 8 10 16 15 24

+ +
10 16 9 13 3

+ +
8 11 2 7 9 2

C

C

[C (C )] C C

C C

C C

H

C H

C H C H

H CH

H CH

H H H H

H H CH

H CH H CH

⎧⎯⎯→ +
⎪

⎯⎯→ +⎪
⎪⎯⎯→ ⎯⎯⎯→⎨
⎪⎯⎯→ ⎯⎯⎯→ +⎪
⎪ ⎯⎯⎯→ + ⎯⎯⎯→ +⎩

 (6.42) 

 
These results suggest that Cu+ acts as an initiator for the early stages of gas phase 

cationic butadiene and isoprene polymerization, as observed for Au+ with these molecules. 
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Figure 115: Mass spectrum of copper (Cu+) ions produced in pure CO at different pressure 
and at 298 K. 
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Figure 116: Mass spectrum of copper (Cu+) ions produced in pure O2 at different pressures 
and at 298 K. 
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Figure 117: Mass spectrum of copper (Cu+) ions produced in CO/O2 mixture in He at 
different pressures and at 298 K. 
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Figure 118: Mass spectrum of copper (Cu+) ions produced in pure butadiene at different 
pressures and at 298 K (B = Butadiene). 
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Figure 119: Mass spectrum of copper (Cu+) ions produced in 1% isoprene at different 
pressures and at 298 K (I = Isoprene). 
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7 : Summary and Conclusions  

 
 
 Vapor phase method was used to synthesize supported and unsupported 

nanoparticle catalysts for CO oxidation. The Laser Vaporization/Controlled Condensation 

(LVCC) technique combines the features of pulsed laser vaporization and the controlled 

condensation process from the vapor phase, where vapor phase synthesis yields 

contamination-free products (as compared to Chemical reductions in solutions), the 

elimination of chemical precursors and solvents, and in most cases, the production of 

highly crystalline nanoparticles.  

 Gold nanoparticles supported on a variety of oxide supports such as CeO2, TiO2, 

CuO and MgO were synthesize using the LVCC method. Au nanoparticles supported on 

CeO2 exhibit higher catalytic activity than Au supported on other oxides. Characterizations 

of these particles confirm that the resulting Au nanoparticles are highly dispersed on the 

surface of the large support CeO2 nanoparticles. The high activity of the Au/CeO2 catalyst 

is attributed to the strong interaction of Au with CeO2, where Au can promote the 

reduction of Ce+4 to Ce+3 and thus facilitate the charge transfer from Au to Ce, which 

results in a higher oxidation state of Au and hence increases the oxygen storage capacity of 

CeO2. Our results indicate that 5 % Au loading on CeO2 has higher activity than 2% Au or 

10% Au. When comparing the catalytic activity of Au/CeO2 prepared by physical (LVCC) 

and chemical (Deposition-precipitation) methods, it was found that the catalytic activity is 

higher for Au/CeO2 prepared by Deposition-precipitation method. This was attributed 

these results to the small particle size and the strong metal-support interaction (SMSI).  
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 The effect of alloying Au and Cu nanoparticles on the catalytic activity for low 

temperature CO oxidation was also investigated. The first vapor phase synthesis of 

unsupported bimetallic Au/Cu alloy nanoparticles was demonstrated. The unsupported Au-

Cu alloy nanoparticle catalyst exhibits higher catalytic activity than the activities of the 

individual components and their physical mixtures. Another important finding was 

obtained from the XRD data taken after the catalysis test which indicates the formation of 

CuO within the bimetallic nanoparticles. Therefore, the improved conversion efficiencies 

of these nanoparticles after the catalysis test are attributed to the formation of CuO, which 

is known to have a higher catalytic activity than Cu for CO oxidation 177,190,191 

 The high activity and stability of the nanoparticle catalysts prepared using the 

LVCC method are remarkable and imply that a variety of efficient catalysts can be 

designed and tested using this approach. The significance of the current method lies mainly 

in its simplicity, flexibility, and the control of the different factors that determine the 

activity of the nanoparticle catalysts. For example, control exerted on the composition of 

the active metal (Pd, Au, and Cu) and the oxide support (CeO2, ZrO2, TiO2, Al2O3, and 

SiO2) can be achieved by controlling the compositions of the initial targets. 

Nonstoichiometric oxide supports can be prepared by using metal powders such as Ce, Zr, 

Ti, Al, CuO, MgO and Si in the selected targets and carrying out the LVCC process in the 

presence of varying concentrations of oxygen/helium carrier gas mixtures. Control of the 

size distribution of the nanoparticle catalysts can be accomplished by controlling the 

pressure of the carrier gas and the temperature gradients during the LVCC synthesis.  
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 The gas phase reactions of Au+ and Cu+ with CO, O2 and H2O molecules using the 

Laser Vaporization ionization, High-Pressure Mass Spectrometry (LVI-HPMS) technique 

were investigated. The gas phase reactions resulting from the interactions of Au+ with CO 

and O2 molecules were also investigated. Although, multiple additions of CO and O2 

molecules have been observed on Au+ at room temperature, no evidence was found of the 

production of CO2. This is attributed to the presence of water molecules which effectively 

replace the oxygen molecules on Au+ at room temperature. The results show, for the first 

time, that extensive numbers of water molecules (up to 8) can be added on the Au+ at room 

temperature. The experimental observation of the unusual stability of the Au+(H2O)n 

clusters is confirmed by theoretical calculations. 

Finally, the role of the metal cations Au+ and Cu+ in initiating the gas phase 

polymerization of butadiene and isoprene vapors was investigated. Under typical 

experimental conditions the metal ions undergo several thousand collisions with the 

monomer molecules in the gas phase thus resulting in ion-molecule reactions with product 

ions that could initiate further reactions leading to polymerization. Gas phase 

polymerization is important not only for probing the mechanism of the catalytic process 

and the exact nature of the catalyst-cocatalyst interaction, but also for the elimination of 

various harmful organic vapors, such as butadiene and isoprene, by converting them into 

non volatile polymers. The early stages of cationic polymerization of isoprene and 

butadiene using the metal cations Au+ and Cu+ act as initiators is presented.  

It is worth noting that the laser vaporization/polymerization method provides the 

ability to encapsulate several different metals or metal oxides which will undoubtedly play 
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a significant role in tuning the various properties of the polymer composites. Systematic 

experimentation on a range of important monomers that can be polymerized by laser 

plasma mechanisms and matched metal nanoparticles would make available a base of 

results upon which the properties of future nanocomposite materials could be reliably 

assessed. 
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APPENDIX A 

 The initial results of Au nanoparticle catalyst obtained using flow reactor mass 
spectrometry system. 
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Figure A 1: Comparison between the catalytic activities of both Au micron-sized powder 

and fresh Au nanoparticle prepared by the LVCC method (run 1). 
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Figure A 2: Catalytic activities of both Au micron-sized powder and fresh Au nanoparticle 

prepared by the LVCC method (run 2). 
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Figure A 3: Comparison between the catalytic activities of Au micron size and Au 

nanoparticle catalyst (run 1 and run 2). 
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Table A 1 Comparison between the catalytic activities of Au micron size and Au 
nanoparticle catalyst (run 1 and run 2). 

 

Maximum Conversion 
(%) 

 

 
Sample 

Au 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Bulk-Run 1 592.4 - 600.3 4.0 

Bulk-Run 2 503.5 - 600.0 22.4 

Nano-Run 1 226.4 394.6 535.6 84.7 

Nano-Run 2 331.3 458.2 600.0 89.8 
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Figure A 4: Catalytic activities of nanoparticle catalysts containing 5% Au on the 
nanoparticle supports (run 1) by the LVCC method in 200 Torr Ar using the 
flow reactor mass spectrometry system. 



www.manaraa.com

 292

 

Table A 2: Summary of catalytic activities of the nanoparticle catalysts consisting of 5% 
Au on different supports as prepared by LVCC (run 1) using the flow reactor 
mass spectrometry system. 

 

Maximum Conversion 
(%) 

 

 
Sample 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Au/CeO2 159.1 247.3 351.4 87.3 

Au/ZrO2 221.2 307.6 492.1 86.5 

Au/Al2O3 314.4 470.9 600.0 79.6 

Au/SiO2 360.2 490.8 600.0 73.6 
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Figure A 5: Catalytic activities of nanoparticle catalysts containing 5% Au on different 

metal oxide supports (run 2) prepared by the LVCC method in 200 Torr Ar 
using the flow reactor mass spectrometry system. 
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Table A 3 summary of catalytic activities of nanoparticle catalysts containing 5% Au on 
different metal oxide supports (run 2) prepared by the LVCC method in 200 Torr 
Ar using the flow reactor mass spectrometry system. 

 

 
 

Maximum Conversion 
(%) 

 

 
Sample 

 
3% 

Conversion 
Light-off 

Temp.(o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Au/CeO2 72.2 120.3 183.3 97.2 

Au/ZrO2 124.6 255.5 431.0 85.1 

Au/Al2O3 339.1 531.5 600.0 65.7 

Au/SiO2 302.5 - 600.0 49.0 
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Figure A 6: Comparison between catalytic activities of 5 % Au in different oxide support 

obtained using a) Flow reactor mass spectroscopy. b) Flow reactor IR 
spectrometry system. 
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Table A 4 compares the catalytic activities of 5 % Au on metal oxide support using both 
flow reactor mass spectroscopy and flow reactor IR spectroscopy. 

 

Maximum Conversion 
(%) 

 

 
Sample 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Au/CeO2 
(Mass spec) 

72.2 120.3 183.3 97.2 

Au/CeO2 
(IR) 

33.5 76.4 330.2 99.8 

Au/ZrO2 
(Mass spec) 

124.6 255.5 431.0 85.1 

Au/ZrO2 
(IR) 

249.0 416.4 561.2 66.5 

Au/Al2O3 
(Mass spec) 

339.1 531.5 600.0 65.7 

Au/Al2O3 
(IR) 

256.8 - 565.9 40.3 

Au/SiO2 
(Mass spec) 

302.5 - 600.0 49.0 

Au/SiO2 
(IR) 

298.4 - 494.9 25.6 
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Figure A 7: Comparison of activities of different loadings of Au on CeO2 support as 
prepared by the LVCC method (run 1) using flow reactor mass spectrometry. 
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Table A 5 summarizes the catalytic activities of Au/CeO2 system with 2, 5, and 10 % Au 
loading supported on CeO2 as prepared by the LVCC method (run 1) using 
flow reactor mass spectrometry. 

 

Maximum Conversion 
(%) 

 

 
Sample 

Au/CeO2 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

2% Au 178.8 251.0 340.5 93.0 

5% Au 159.1 247.3 351.4 87.3 

10% Au 168.9 286.5 364.4 84.4 
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Figure A 8: Comparison between the activities of Au/CeO2 system with 2, 5, and 10 % Au 
loading supported on CeO2 as prepared by the LVCC method (run 2) using 
flow reactor mass spectrometry . 
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Table A 6 summarizes the catalytic activities of Au/CeO2 system with 2, 5, and 10 % Au 
loading supported on CeO2 as prepared by the LVCC method (run 1) using 
flow reactor mass spectrometry. 

 

Maximum Conversion 
(%) 

 

 
Sample 

Au/CeO2 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

2% Au 81.7 170.1 341.1 96.9 

5% Au 72.2 120.3 183.3 97.2 

10% Au 133.7 233.4 400.0 94.6 



www.manaraa.com

 301

 

50 100 150 200 250 300 350 400
0

20

40

60

80

100
 2%
 5%
 10%

 

CO
 co

nv
er

si
on

 ( 
% 

)

Catalyst Temperature ( 0 C)
50 100 150 200 250 300 350 400

0

20

40

60

80

100
 2 % Au
 5 % Au
 10 % Au

CO
 c

on
ve

rs
io

n 
( %

 )

Catalyst Temperature ( 0 C)  

Figure A 9: Comparison between the catalytic activities of Au/CeO2 system with 2, 5, and 
10 % Au loading supported on CeO2 as prepared by the LVCC method (run 2) 
using flow reactor mass spectroscopy and flow reactor IR spectroscopy. 
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Table A 7 summarizes the catalytic activities of Au/CeO2 system with 2, 5, and 10 % Au 
loading supported on CeO2 as prepared by the LVCC method (run 2) using 
flow reactor mass spectroscopy and flow reactor IR spectroscopy. 

 

Maximum Conversion 
(%) 

 

 
Sample 

Au/CeO2 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

2 % Au 
(Mass spec) 

81.7 170.1 341.1 96.9 

2 % Au 
(IR) 

53.2 107.5 258.2 99.9 

5 % Au 
(Mass spec) 

72.2 120.3 183.3 97.2 

5 % Au 
(IR) 

33.5 76.4 330.2 99.8 

10 % Au 
(Mass spec) 

133.7 233.4 400.0 94.6 

10 % Au 
(IR) 

117.6 260.1 361.0 94.1 
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Figure A 10: Comparison between the catalytic activity of the supported Au/CeO2 
nanoparticles prepared by the LVCC method (run 2) with the activities of 
individual Au nanoparticles, CeO2 nanoparticles, and the 5% Au nanoparticles 
in a 95 % CeO2 nanoparticles mixture. 
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Figure A 11: Comparison between the catalytic activities of 5 % Au/CeO2 with and 
without the presence of 1000 ppm butadiene and 1000 ppm isoprene. 
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Table A 8 summarizes the catalytic activities of Au/CeO2 system with 2, 5, and 10 % Au 
loading supported on CeO2 as prepared by the LVCC method (run 2) using flow 
reactor mass spectroscopy and flow reactor IR spectroscopy. 

 

Maximum Conversion 
(%) 

 

 
Sample 

Au/CeO2 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Au/CeO2 72.2 120.3 183.3 97.2 

With 
butadiene 

206.0 255.0 334.0 99.0 

With 
isoprene 

170.0 327.0 466 88.0 
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Figure A 12: Catalytic activities of 5 % Au/CeO2 prepared by LVCC in 200 Torr Ar (run 
2) by using flow reactor mass spectroscopy and flow reactor IR spectroscopy. 
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Table A 9 summarizes the catalytic activities of 5 % Au/CeO2 prepared by LVCC in 200 
Torr Ar (run 2) by using flow reactor mass spectroscopy and flow reactor IR 
spectroscopy. 

 

Maximum Conversion 
(%) 

 

 
Sample 

5%Au/CeO2 
(Run 2) 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o 

C) 
Conversion

Mass spec 72.2 120.3 183.3 97.2 

IR 33.5 76.4 330.2 99.8 
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Table A 10 compares the catalytic activity of the supported Au/CeO2 nanoparticles 
prepared by the LVCC method (run 2) with the activities of individual Au 
nanoparticles, CeO2 nanoparticles, and the 5% Au nanoparticles in a 95 % 
CeO2 nanoparticles mixture. 

 

Maximum Conversion 
(%) 

 

 
Sample 

 

 
3% 

Conversion 
Light-off 

Temp. (o C) 

50 % 
Conversion 
Temp. (o C) 

Temp. (o C) Conversion

Au (Nano) 331.3 458.2 600.0 89.8 

CeO2 
(Nano) 

264.6 415.2 600.0 88.7 

Physical 
Mixture 

212.6 448.5 600.0 91.8 

Au/CeO2 
(LVCC) 

72.2 120.3 183.3 97.2 
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